Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Comput Methods Programs Biomed ; 250: 108193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678957

ABSTRACT

BACKGROUND: Cancer/testis antigens (CTAs), also known as tumor-specific antigens (TSAs) are specifically expressed in cancer cells and exhibit high immunogenicity, making them promising targets for immunotherapy and cancer vaccines. METHODS: A new integrated high-throughput screening methodology for CTAs was proposed in this study through combining DNA methylation and RNA sequencing data. Briefly, the genes with increased transcript level and decreased DNA methylation were identified by multi-omics analysis. RNA sequencing studies in cell lines exposed to DNA methyltransferase (DNMT) inhibitors were performed to validate the inherent causal relationship between DNA hypomethylation and gene expression upregulation. RESULTS: We proposed a new integrated high-throughput screening methodology for identification of CTAs using multi-omics analysis. In addition, we tested the feasibility of this method using gastric cancer (GC) as an example. In GC, we identified over 2000 primary candidate CTAs and ultimately identified 20 CTAs with significant tissue-specificity, including a testis-specific serine protease TESSP1/PRSS41. Integrated analysis confirmed that PRSS41 expression was reactivated in gastrointestinal cancers by promoter DNA hypomethylation at the CpG site (cg08104780). Additionally, DNA hypomethylation of PRSS41 predicted a poor prognosis in GC. CONCLUSION: We propose a new high-throughput screening method for the identification of CTAs in cancer and validate its effectiveness. Our work emphasizes that serine protease PRSS41 is a novel TSA that is reactivated in GC due to promoter DNA hypomethylation.


Subject(s)
Antigens, Neoplasm , DNA Methylation , High-Throughput Screening Assays , Stomach Neoplasms , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , High-Throughput Screening Assays/methods , Male , Cell Line, Tumor , Testis/metabolism , Gene Expression Regulation, Neoplastic , Genomics , Promoter Regions, Genetic , Sequence Analysis, RNA , Multiomics
2.
Sensors (Basel) ; 24(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475186

ABSTRACT

Micro-vibrations significantly influence the imaging quality and pointing accuracy of high-precision space-borne payloads. To mitigate this issue, vibration isolation technology must be employed to reduce the transmission of micro-vibrations to payloads. In this paper, a novel active-passive hybrid isolation (APHI) system based on a strain sensor is proposed for high-precision space payloads, and corresponding theoretical and experimental studies are implemented. First, a theoretical analysis model of the APHI system is established using a two-degrees-of-freedom system, and an integral control method based on strain sensing is presented. Then, an electromagnetic damper, active piezoelectric actuator, and strain sensor are designed and manufactured. Finally, an APHI experimental system is implemented to validate the effectiveness of electromagnetic damping and strain-sensing active control. Additionally, the control effects of acceleration, displacement, and strain sensors are compared. The results demonstrate that strain sensors can achieve effective active damping control, and the control method based on strain sensors can effectively suppress the payload response while maintaining stability. Both displacement and strain sensors exhibit superior suppression effects compared with the acceleration sensor, with the strain sensor showing greater potential for practical engineering applications than the displacement sensor.

3.
Eur J Med Genet ; 68: 104921, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325644

ABSTRACT

Heterozygous carriers of the survival of motor neuron 1 (SMN1) gene deletion in parents account for approximately 95% of neonatal spinal muscular atrophy cases. Given the severity of the disease, professional organizations have recommended periconceptional spinal muscular atrophy carrier screening to all couples, regardless of race or ethnicity. However, the prevalence of screening activities in mainland China remains suboptimal, mainly attributed to the limitations of the existing carrier screening methods. Herein, we aimed to develop a low-cost, accessible, and accurate carrier screening method based on duplex droplet digital PCR (ddPCR), to cover a wider population in developing countries, including China. The receiver operating characteristic curve was used to determine the cut-off value of SMN1 copy numbers. Performance validation was conducted for linearity, precision, and accuracy. In total, 482 cases were considered to validate the concordance between the developed ddPCR assay and multiplex ligation-dependent probe amplification. Linear correlations were excellent between the expected concentration of the reference gene and the observed values (R2 > 0.99). Both the intra- and inter-assay precision of our ddPCR assays were less than 6.0%. The multiplex ligation-dependent probe amplification and ddPCR results were consistent in 480 of the 482 cases (99.6%). Two cases with multiplex ligation-dependent probe amplification, suggestive of two copies of SMN1 exon 7, were classified into three copies by ddPCR analysis. The overall correct classification of the samples included in our ddPCR assay was 100%. This study demonstrates that an appropriate cut-off value is an important prerequisite for establishing a semi-quantitative method to determine the SMN1 copy numbers. Compared to conventional methods, our ddPCR assay is low-cost, highly accurate, and has full potential for application in population spinal muscular atrophy carriers screening.


Subject(s)
Developing Countries , Muscular Atrophy, Spinal , Infant, Newborn , Humans , Gene Deletion , Heterozygote , Multiplex Polymerase Chain Reaction/methods , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics
4.
Clin Chim Acta ; 553: 117708, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38097128

ABSTRACT

For over two decades, multiplex ligation-dependent probe amplification (MLPA) has served as the gold standard for genetic testing of spinal muscular atrophy. However, there is emerging evidence questioning the reliability of MLPA in determining the copy numbers (CNs) of the survival of motor neuron (SMN) gene in certain cases. Recently, digital polymerase chain reaction (dPCR) has shown potential for better performance in copy number variant detection. This study aimed to compare MLPA and dPCR in quantifying SMN1 and SMN2 CNs, identify reasons for observed discrepancies, and explore the clinical implications of false results. A total of 733 DNA samples, previously subjected to MLPA analysis, were tested using multiplex droplet dPCR assays. Samples exhibiting inconsistent results between the two methods underwent repeated dPCR assays. When inconsistencies persisted, a third method was employed for verification. Digital PCR yielded results consistent with those of MLPA in 94.4% (692/733) of samples. Forty-one cases exhibited quantitative disparities in SMN1 and/or SMN2 CNs between the two methods. Confirmatory tests revealed that 37 inaccurate results were produced by the MLPA analysis, whereas four were attributed to the dPCR method. The dPCR technique exhibits better accuracy than MLPA and is qualified for SMA genetic testing across various clinical scenarios.


Subject(s)
Multiplex Polymerase Chain Reaction , Muscular Atrophy, Spinal , Humans , Multiplex Polymerase Chain Reaction/methods , Reproducibility of Results , DNA Copy Number Variations , Motor Neurons , Genetic Testing , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics
5.
Cell Biosci ; 13(1): 124, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400936

ABSTRACT

BACKGROUND: Cancer/testis (CT) antigens/genes are usually overexpressed in cancers and exhibit high immunogenicity, making them promising targets for immunotherapy and cancer vaccines. The role of serine protease PRSS56 in cancers remains unknown to date. METHODS: RNA sequencing studies were performed to screen CT genes in gastric cancer (GC) and colorectal cancer (CRC) cells exposed to DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-AZA-CdR). Bioinformatics analysis was conducted to analyze the correlation between PRSS56 expression and DNA methylation. Functional experiments were performed to explore the biological function of PRSS56 in GC and CRC. RESULTS: In this study, we identified the testis-specific serine proteases PRSS56 as a novel CT antigen. PRSS56 was frequently overexpressed in various cancers, especially in gastrointestinal cancer. PRSS56 expression was negatively associated with promoter DNA methylation level, and positively associated with gene body methylation level. PRSS56 expression was significantly activated in colorectal and gastric cancer cells exposed to DNA methyltransferase inhibitors. Importantly, our finding highlights that the decreased methylation level of the CpG site cg10242318 in the PRSS56 promoter region resulted in its overexpression in GC and CRC. Additionally, functional assays verified that PRSS56 overexpression activated PI3K-AKT signaling in GC and CRC. CONCLUSION: Serine protease PRSS56 is a novel CT antigen that is reactivated in cancers by promoter DNA hypomethylation. PRSS56 functions oncogenic roles in GC and CRC by activating of PI3K/AKT axis. Our results presented here represent the first data on the function of the serine protease PRSS56 in cancers.

6.
Epidemics ; 44: 100707, 2023 09.
Article in English | MEDLINE | ID: mdl-37480747

ABSTRACT

OBJECTIVE: Multiple human papillomavirus (HPV)-associated diseases have put a significant disease burden on the world. Therefore, we conducted a study to explore the epidemiological characteristics of HPV and the transmissibility of its genotypes. METHODS: HPV testing data was collected from Hospital. A transmission dynamics model of HPV was constructed to simulate and compare the transmissibility of different HPV genotypes, which was quantitatively described by the basic reproduction number (R0). RESULTS: The collected HPV subjects were mainly from Xiamen City, Zhangzhou City and Quanzhou City, together, they are known as the Hokkien golden triangle. There were variations in the distribution of HPV infections by age groups. Among all HPV genotypes, 13 of them had R0 > 1, with 10 of them being high-risk types. The top five were HPV56, 18, 58, 52 and 53, among which, HPV56, 18, 58 and 42 were of high risk, whereas HPV53 was not, and the R0 values for the five were 3.35 (CI: 0.00-9.99), 3.20 (CI: 0.00-6.46), 3.19 (CI: 1.27-6.94), 3.19 (CI: 1.01-8.42) and 2.99 (CI: 0.00-9.39), respectively. In addition, HPV52 had R0 > 1 for about 51 months, which had the longest duration. CONCLUSION: Most high-risk HPV types in the Hokkien golden triangle could transmit among the population. Therefore, there is a need of further optimization for developing HPV vaccines and better detection methods in the region.


Subject(s)
Papillomavirus Infections , Humans , Retrospective Studies , Papillomavirus Infections/epidemiology , Papillomavirus Infections/genetics , Human Papillomavirus Viruses , China/epidemiology
7.
Commun Biol ; 6(1): 581, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258640

ABSTRACT

To date, reliable biomarkers remain unclear that could link functional connectivity to patients' symptoms for detecting and predicting the process from normal aging to Alzheimer's disease (AD) in elderly people with specific genotypes. To address this, individual-specific functional connectivity is constructed for elderly participants with/without APOE ε4 allele. Then, we utilize recursive feature selection-based machine learning to reveal individual brain-behavior relationships and to predict the symptom transition in different genotypes. Our findings reveal that compared with conventional atlas-based functional connectivity, individual-specific functional connectivity exhibits higher classification and prediction performance from normal aging to AD in both APOE ε4 groups, while no significant performance is detected when the data of two genotyping groups are combined. Furthermore, individual-specific between-network connectivity constitutes a major contributor to assessing cognitive symptoms. This study highlights the essential role of individual variation in cortical functional anatomy and the integration of brain and behavior in predicting individualized symptoms.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Aged , Apolipoprotein E4/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genotype , Brain/diagnostic imaging , Brain Mapping
8.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240367

ABSTRACT

To explore the mechanism of inconsistent relationships between plasma lipid profiles and post-traumatic stress disorder (PTSD) reported before, we hypothesized that interplays might exist between PTSD and a variation of rs5925 at low-density lipoprotein receptor (LDLR) gene on plasma lipid profiles. To test our hypothesis, we analyzed the plasma lipid profiles of 709 high school pupils with various genotypes of LDLR rs5925 and with or without PTSD. The results demonstrated that PTSD prevalence in the C allele carriers was higher than that in the TT homozygotes regardless of gender. The C allele carriers had higher levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), ratios of TC to high-density lipoprotein cholesterol (TC/HDL-C) and LDL-C/HDL-C than the TT homozygotes in the male controls, and only higher TC in the female controls, but no differences in the male or female PTSD subjects. PTSD increased TC in the female TT homozygotes but not in the female C allele carriers. PTSD increased TC/HDL-C in the male TT homozygotes but not in the C allele carriers. These results suggest interactions between PTSD and LDLR rs5925 on plasma lipid profiles, which may be among the explanations for previously reported inconsistent relationships between LDLR rs5925 or PTSD and plasma lipid profiles, and facilitate the development of precision medicine interferences in hypercholesterolemia in individuals with different genetic backgrounds and psychiatric status. Psychiatric care or drug supplement may particularly be needed by female hypercholesterolemic subjects with the TT genotype of LDLR rs5925 in Chinese adolescents.


Subject(s)
Hypercholesterolemia , Stress Disorders, Post-Traumatic , Adolescent , Humans , Male , Female , Homozygote , Stress Disorders, Post-Traumatic/genetics , Cholesterol, LDL , Lipids , Genotype , Cholesterol, HDL
9.
Front Mol Biosci ; 10: 1128739, 2023.
Article in English | MEDLINE | ID: mdl-37051325

ABSTRACT

Klinefelter syndrome (KS, 47XXY) is a disorder characterized by sex chromosomal aneuploidy, which may lead to changes in epigenetic regulations of gene expression. To define epigenetic architectures in 47XXY, we annotated DNA methylation in euploid males (46XY) and females (46XX), and 47XXY individuals using whole genome bisulfite sequencing (WGBS) and integrated chromatin accessbilty, and detected abnormal hypermethylation in 47XXY. Furthermore, we detected altered chromatin accessibility in 47XXY, in particular in chromosome X, using Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) in cultured amniotic cells. Our results construct the whole genome-wide DNA methylation map in 47XXY, and provide new insights into the early epigenomic dysregulation resulting from an extra chromosome X in 47XXY.

10.
Molecules ; 28(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049877

ABSTRACT

Unconventional polysaccharides as representative active substances from stems of Trollius chinensis Bunge (TC) were studied. Crude polysaccharides from the stems of TC (TCSP) and the petals of TC (TCPP) were extracted, and the moisture retention and antioxidation activities of both TCSP and TCPP in vitro were studied. The weight-average molar masses (Mw) of TCSP (6.07 × 105 Da) were lower than those of TCPP (9.72 × 105 Da). Glucuronic acid and xylose only existed in TCSP, and the molar ratio of galacturonic acid and mannose in TCSP was significantly higher than that in TCPP. No significant differences in moisture retention ability were found between TCSP and TCPP. The reducing capacity and dphenyl picryl hydrazinyl (DPPH) radical scavenging capacity of TCSP were slightly weaker than those of TCPP. The 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity of TCSP can be equivalent to that of TCPP. The moisture retention ability was not different between TCSP and TCPP, which are both highly homologous with traditional humectants. The antioxidation assays in vitro demonstrated that the antioxidant activity of TCSP is stronger compared to that of some plant-derived polysaccharides. The stems of TC can be a promising source of unconventional polysaccharides, which possess moisture retention and antioxidation capacities for the cosmetics industry.


Subject(s)
Antioxidants , Mannose , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Weight , Xylose , Polysaccharides/pharmacology , Polysaccharides/chemistry
11.
Adv Mater ; 35(25): e2300655, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37000924

ABSTRACT

Constructed through relatively weak noncovalent forces, the stability of organic supramolecular materials has shown to be a challenge. Herein, the designing of a linear conjugated polymer is proposed through creating a chain polymer connected via bridging covalent bonds in one direction and retaining π-stacked aromatic columns in its orthogonal direction. Specifically, three analogs of linear conjugated polymers through tuning the aromatic core and its covalently linked moiety (bridging group) within the building block monomer are prepared. Cooperatively supported by strong π-π stacking interactions from the extended aromatic core of perylene and favorable dipole-dipole interactions from the bridging group, the as-expected high crystallinity, wide light absorption, and increased stability are successfully achieved for Oxamide-PDI (perylene diimide) through ordered molecular arrangement, and present a remarkable full-spectrum oxygen evolution rate of 5110.25 µmol g-1  h-1 without any cocatalyst. Notably, experimental and theoretical studies reveal that large internal dipole moments within Oxamide-PDI together with its ordered crystalline structure enable a robust built-in electric field for efficient charge carrier migration and separation. Moreover, density functional theory (DFT) calculations also reveal oxidative sites located at carbon atoms next to imide bonds and inner bay positions based on proven spatially separated photogenerated electrons and holes, thus resulting in highly efficient water photolysis into oxygen.

12.
Cell Prolif ; 56(6): e13423, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36808651

ABSTRACT

Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.


Subject(s)
Epithelial-Mesenchymal Transition , Stomach Neoplasms , Humans , Transcription Factors , Signal Transduction , Cell Differentiation , Neoplasm Metastasis
13.
Cell Death Discov ; 9(1): 17, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681667

ABSTRACT

We previously reported that IGFBP7 plays a role in maintaining mRNA stability of oncogenic lncRNA UBE2CP3 by RNA-RNA interaction in gastric cancer (GC). Clinical cohort studies had implied an oncogenic role of IGFBP7 in GC. However, the molecular mechanism of IGFBP7 in GC progression remains unknown. In this study, clinical analysis based on two independent cohorts showed that IGFBP7 was positively associated with poor prognosis and macrophage infiltration in GC. Loss-of-function studies confirmed the oncogenic properties of IGFBP7 in regulating GC cell proliferation and invasion. Mechanismly, IGFBP7 was highly expressed in cancer-associated fibroblasts (CAF) and mesenchymal cells, and was induced by epithelial-to-mesenchymal transition (EMT) signaling, since its expression was increased by TGF-beta treatment and reduced by overexpression of OVOL2 in GC. RNA sequencing, qRT-PCR, ELISA assay showed that IGFBP7 positively regulated FGF2 expression and secretion in GC. Transcriptome analysis revealed that FGFR1 was downregulated in M1 polarization but upregulated in M2 polarization. Exogenous recombinant IGFBP7 treatment in macrophages and GC cells further identified that IGFBP7 promotes tumor associated macrophage (TAM) polarization via FGF2/FGFR1/PI3K/AKT axis. Our finding here represented the first evidence that IGFBP7 promotes GC by enhancing TAM/M2 macrophage polarization through FGF2/FGFR1/PI3K/AKT axis.

14.
Prep Biochem Biotechnol ; 53(1): 76-80, 2023.
Article in English | MEDLINE | ID: mdl-35196461

ABSTRACT

Preparation of sufficient mouse Leydig cells (LCs) with high purity is a prerequisite for investigations of the biological/pathological functions of LCs in mouse models. Density gradient centrifugation based on discontinuous Percoll gradients is an effective method (defined as regular method) for LC isolation. In this study, we developed two modified methods for LC isolation and compared their performance with that of the regular method. Modified method 1 integrated the crude LCs into the 50% Percoll solution before centrifugation. Modified method 2 sequentially used 50 and 60% Percoll solutions to isolate LCs. The purity of LCs was approximately 88.4, 91.3, and 79.7% derived from the regular, modified 1, and modified 2 methods, respectively. The yields of LCs in the same respective order were approximately 1.7 × 105, 3.9 × 105, and 11.9 × 105 cells per 108 interstitial cells input. Modified method 1 attained higher purity and yields than those of the regular method. Although the purity of LCs was relatively low for modified method 2, it could be used before further purification by, for example, fluorescence-activated or magnetic-activated cell sorting, owing to its simplicity and high yields. Therefore, our study provided alternative methods to facilitate LC isolation in mice.


Subject(s)
Leydig Cells , Male , Mice , Animals , Centrifugation, Density Gradient/methods , Cell Separation/methods , Centrifugation
15.
Scand J Immunol ; 98(1): e13285, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38441210

ABSTRACT

Autoimmunity is reported involving in reproductive failures, and antinuclear antibody (ANA) positivity has been regarded as a typical feature of autoimmunity. Published studies on the association of ANA with reproductive failures including infertility are controversial. The aim of this meta-analysis was to analyse whether the presence of ANA positivity increases the risk of infertility in women. We searched the PubMed and Embase databases for relevant literature without any restrictions prior to April 28, 2021. All analyses were performed using the RevMan 5.3 software. Twelve studies with 2734 participants, including 1482 patients with infertility, met the inclusion and exclusion criteria. The total positivity rate of ANA was 23.8% (353/1482) in all infertile patients and 8.5% (107/1252) in the control group. Infertile females had a significantly higher ANA positivity rate than the control group (odds ratio [OR] = 2.90, 95% confidence interval [CI]: 1.72-4.87, I2 = 65%, P < .0001). Several subgroup analyses were performed to reduce the heterogeneity. ANA positivity was associated with female infertility in studies either performed by indirect immunofluorescence (OR = 2.26, 95% CI:1.67-3.06, P < .00001) or by ELISA (OR = 10.76, 95% CI:1.82-63.64, P < .00001). ANA was significantly associated with increased risk of women infertility either after the definite exclusion of individuals with autoimmune diseases (AID) or without exclusion [(OR = 1.99, 95% CI:1.29-3.06, P = .002), (OR = 2.76, 95% CI:1.56-4.88, P = .0005), respectively]. This meta-analysis provides a comprehensive overview of the prevalence of antinuclear antibodies (ANA) in infertile women and suggests that ANA positivity increases the risk of infertility.


Subject(s)
Autoimmune Diseases , Infertility, Female , Female , Humans , Antibodies, Antinuclear , Autoimmunity , Enzyme-Linked Immunosorbent Assay
16.
Front Genet ; 13: 844381, 2022.
Article in English | MEDLINE | ID: mdl-36212124

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is caused by pathogenic variants of G6PD that result in decreased G6PD activity, is an X-linked inherited inborn error of metabolism that occurs worldwide. Individuals with G6PD deficiency and heterozygous females with normal G6PD activity (i.e., all individuals with pathogenic G6PD variants) are at risk of developing hemolytic anemia under increased oxidative challenge. However, this risk can be minimized by timely diagnosis. Currently, two assays are used to diagnose G6PD deficiency in China: evaluation of enzymatic activity and targeted genotyping. In terms of identification of all individuals with pathogenic G6PD variants, the performance and cost of different diagnostic strategies (isolated or combined evaluation of G6PD activity and G6PD genotyping) can vary, and these factors should be comprehensively evaluated. In this study, we examined 555 infants (437 males and 118 females) who were positive for the newborn screening of G6PD deficiency. We first evaluated the diagnostic performances of enzymatic testing and targeted genotyping. Both assays attained 100% specificities and positive predictive values for both male and female infants. In contrast, the sensitivities and negative predictive values (NPVs) of the diagnostic tests were different for male and female infants. For male infants, the sensitivities were 99.8 and 98.3%, and the NPVs were 94.1% and 69.6%, for enzymatic testing and targeted genotyping, respectively. For female infants, the sensitivities were 62.5% and 97.9%, and the NPVs were 37.9% and 91.7%, for enzymatic testing and targeted genotyping, respectively. We also evaluated the cost of the five different diagnostic strategies. The combination of G6PD activity testing of all infants, followed by genotyping of female infants with normal G6PD activity, attained high diagnostic sensitivity (99.8%) at a low cost (8.60 USD per diagnosed case). In the future, simultaneous examination of G6PD activity and whole-exon or whole-gene G6PD sequencing could become a standard clinical practice. Our data provide references for clinical practice on the standardization of current and future interventions for G6PD deficiency in China.

17.
Microbiol Spectr ; 10(6): e0196622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314938

ABSTRACT

Many diverse pathogens have been discovered from reproductive-tract infections, but the relationship between the presence and abundance of particular pathogen species and disease manifestations is poorly defined. The present work examined the association of multiple common pathogens causing sexually transmitted infections (STIs) with cervicitis and vaginitis. The presence and abundance of 15 STI pathogens and the genotypes of human papillomavirus were determined in a cohort of 944 women that included 159 cervicitis patients, 207 vaginitis patients, and 578 healthy controls. Logistic regression and random forest models were constructed and validated in a separate cohort of 420 women comprising 52 cervicitis patients, 109 vaginitis patients, and 259 healthy controls. The frequency of individual STI pathogen species varied among the symptomatic patients and healthy controls. Abundance determination was necessary for most pathogens that were associated with the studied diseases. STI pathogens were more commonly associated with cervicitis than with vaginitis. Pathogen identification- and quantification-based diagnosis was observed for cervicitis with high sensitivity and specificity, but for vaginitis, the assay results would need to be combined with results of other diagnostic tests to firmly establish the pathogen-disease correlation. Integrated qualitative and quantitative detection of a selected panel of common STI pathogens can reveal their association with cervicitis and vaginitis. STI pathogen identification and quantification can be used to diagnose cervicitis and also help improve correct diagnosis of vaginitis. IMPORTANCE Scarce information exists with regard to whether STI pathogens can be defined as valid microbiological predictive markers for the diagnosis of cervicitis and vaginitis. We therefore conducted this study to assess the presence and abundance of a wide range of STI pathogens among patients having these two diseases and healthy controls as well. High sensitivity and specificity were observed for cervicitis by pathogen identification- and quantification-based diagnosis. In contrast, the assay results obtained for vaginitis would need to be combined with test results obtained by other diagnostic methods to decisively establish the pathogen-disease correlation. Simultaneous qualitative and quantitative detection of a selected panel of common STI pathogens and further coupling with machine learning models is worthwhile for establishing pathogen-based diagnosis of gynecological inflammations, which could be of great value in guiding the rational use of antimicrobials to control the spread of STIs.


Subject(s)
Sexually Transmitted Diseases , Uterine Cervicitis , Vaginitis , Humans , Female , Uterine Cervicitis/diagnosis , Uterine Cervicitis/microbiology , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/epidemiology , Vaginitis/diagnosis , Vaginitis/microbiology , Inflammation
18.
Front Cell Dev Biol ; 10: 825345, 2022.
Article in English | MEDLINE | ID: mdl-35392164

ABSTRACT

Trisomy 18, commonly known as Edwards syndrome, is the second most common autosomal trisomy among live born neonates. Multiple tissues including cardiac, abdominal, and nervous systems are affected by an extra chromosome 18. To delineate the complexity of anomalies of trisomy 18, we analyzed cultured amniotic fluid cells from two euploid and three trisomy 18 samples using single-cell transcriptomics. We identified 6 cell groups, which function in development of major tissues such as kidney, vasculature and smooth muscle, and display significant alterations in gene expression as detected by single-cell RNA-sequencing. Moreover, we demonstrated significant gene expression changes in previously proposed trisomy 18 critical regions, and identified three new regions such as 18p11.32, 18q11 and 18q21.32, which are likely associated with trisomy 18 phenotypes. Our results indicate complexity of trisomy 18 at the gene expression level and reveal genetic reasoning of diverse phenotypes in trisomy 18 patients.

19.
Asian J Androl ; 24(1): 102-108, 2022.
Article in English | MEDLINE | ID: mdl-34100389

ABSTRACT

Klinefelter syndrome (KS) is one of the most frequent genetic abnormalities and the leading genetic cause of nonobstructive azoospermia. The breeding and study of KS mouse models are essential to advancing our knowledge of the underlying pathological mechanism. Karyotyping and fluorescence in situ hybridization are reliable methods for identifying chromosomal contents. However, technical issues associated with these methods can decrease the efficiency of breeding KS mouse models and limit studies that require rapid identification of target mice. To overcome these limitations, we developed three polymerase chain reaction-based assays to measure specific genetic information, including presence or absence of the sex determining region of chromosome Y (Sry), copy number of amelogenin, X-linked (Amelx), and inactive X specific transcripts (Xist) levels. Through a combined analysis of the assay results, we can infer the karyotype of target mice. We confirmed the utility of our assays with the successful generation of KS mouse models. Our assays are rapid, inexpensive, high capacity, easy to perform, and only require small sample amounts. Therefore, they facilitate the breeding and study of KS mouse models and help advance our knowledge of the pathological mechanism underlying KS.


Subject(s)
Azoospermia , Klinefelter Syndrome , Animals , In Situ Hybridization, Fluorescence , Karyotyping , Klinefelter Syndrome/genetics , Mice , Polymerase Chain Reaction
20.
Front Oncol ; 12: 1025594, 2022.
Article in English | MEDLINE | ID: mdl-36620589

ABSTRACT

Background: The dysregulated genes and miRNAs in tumor progression can be used as biomarkers for tumor diagnosis and prognosis. However, the biomarkers for predicting the clinical outcome of gastrointestinal cancer (GIC) are still scarce. Methods: Genome-wide association studies were performed to screen optimal prognostic miRNA biomarkers. RNA-seq, Ago-HITS-CLIP-seq, western blotting and qRT-PCR assays were conducted to identify target genes of miR-194. Genome-wide CRISPR-cas9 proliferation screening analysis were conducted to distinguish passenger gene and driver gene. Results: A total of 9 prognostic miRNAs for GIC were identified by global microRNA expression analysis. Among them, miR-194 was the only one miRNA that significantly associated with overall survival, disease-specific survival and progress-free interval in both gastric, colorectal and liver cancers, indicating miR-194 was an optimal prognostic biomarker for GIC. RNA-seq analysis confirmed 18 conservative target genes of miR-194. Four of them, including ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5, were directly targeted by miR-194 and required for cell proliferation. Cell proliferation assay validated that miR-194 inhibits cell proliferation by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5 in GIC. Conclusion: In summary, miR-194 is an optimal biomarker for predicting the outcome of GIC. Our finding highlights that miR-194 exerts a tumor-suppressive role in digestive system cancers by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5.

SELECTION OF CITATIONS
SEARCH DETAIL
...