Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(6): 103726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636203

ABSTRACT

Residual feed intake (RFI) is a crucial parameter for assessing the feeding efficiency of poultry. Minimizing RFI can enhance feed utilization and reduce costs. In this study, 315 healthy female ducks were individually housed in cages. Growth performance was monitored during the high laying period, from 290 to 325 d of age. The cecal transcriptome and microbiome of 12 ducks with high RFI and 12 with low residual feed intake (LRFI) were analyzed. Regarding growth performance, the LRFI group exhibited significantly lower RFI, feed conversion ratio (FCR), and feed intake (Fi) compared to the HRFI group (p < 0.01). However, there were no significant differences observed in body weight (BW), body weight gain (BWG), and egg mass (EML) between the groups (p > 0.05). Microbiome analysis demonstrated that RFI impacted gut microbial abundance, particularly affecting metabolism and disease-related microorganisms such as Romboutsia, Enterococcus, and Megamonas funiformis. Transcriptome analysis revealed that varying RFI changed the expression of genes related to glucose metabolism and lipid metabolism, including APOA1, G6PC1, PCK1, and PLIN1. The integrated analysis indicated that host genes were closely linked to the microbiota and primarily function in lipid metabolism, which may enhance feeding efficiency by influencing metabolism and maintaining gut homeostasis.


Subject(s)
Ducks , Gastrointestinal Microbiome , Transcriptome , Animals , Ducks/physiology , Ducks/microbiology , Ducks/genetics , Female , Animal Feed/analysis , Eating , Cecum/microbiology , Gene Expression Profiling/veterinary
2.
Genes (Basel) ; 15(2)2024 01 29.
Article in English | MEDLINE | ID: mdl-38397170

ABSTRACT

The egg-laying performance of Shan Ma ducks (Anas Platyrhynchos) is a crucial economic trait. Nevertheless, limited research has been conducted on the egg-laying performance of this species. We examined routine blood indicators and observed higher levels of metabolic and immune-related factors in the high-egg-production group compared with the low-egg-production group. Furthermore, we explored the ovarian transcriptome of both high- and low-egg-production groups of Shan Ma ducks using Illumina NovaSeq 6000 sequencing. A total of 1357 differentially expressed genes (DEGs) were identified, with 686 down-regulated and 671 up-regulated in the high-egg-production (HEP) ducks and low-egg-production (LEP) ducks. Several genes involved in the regulation of ovarian development, including neuropeptide Y (NPY), cell cycle protein-dependent kinase 1 (CDK1), and transcription factor 1 (E2F1), exhibited significant differential expressions at varying stages of egg production. Pathway functional analysis revealed that the DEGs were primarily associated with the steroid biosynthesis pathway, and the neuroactive ligand-receptor interaction pathway exhibited higher activity in the HEP group compared to the LEP group. This study offers valuable information about and novel insights into high egg production.


Subject(s)
Ovary , Transcriptome , Animals , Female , Ovary/metabolism , Transcriptome/genetics , Ducks/genetics , Ducks/metabolism , Gene Expression Profiling , Oviposition
3.
Poult Sci ; 103(3): 103355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228061

ABSTRACT

Feed costs account for approximately 60 to 70% of the cost of poultry farming, and feed utilization is closely related to the profitability of the poultry industry. To understand the causes of the differences in feeding in Shan Partridge ducks, we compared the hypothalamus transcriptome profiles of 2 groups of ducks using RNA-seq. The 2 groups were: 1) low-residual feed intake (LRFI) group with low feed intake but high feed efficiency, and 2) high-residual feed intake (HRFI) group with high feed intake but low feed efficiency. We found 78 DEGs were enriched in 9 differential Kyoto Encyclopedia of Genes and Genome (KEGG) pathways, including neuroactive ligand-receptor interaction, GABAergic synapse, nitrogen metabolism, cAMP signaling pathway, calcium signaling pathway, nitrogen metabolism, tyrosine metabolism, ovarian steroidogenesis, and gluconeogenesis. To further identify core genes among the 78 DEGs, we performed protein-protein interaction and coexpression network analyses. After comprehensive analysis and experimental validation, 4 core genes, namely, glucagon (GCG), cholecystokinin (CCK), gamma-aminobutyric acid type A receptor subunit delta (GABRD), and gamma-aminobutyric acid type A receptor subunit beta1 (GABRB1), were identified as potential core genes responsible for the difference in residual feeding intake between the 2 breeds. We also investigated the level of cholecystokinin (CCK), neuropeptide Y (NPY), peptide YY (PYY), ghrelin, and glucagon-like peptide1 (GLP-1) hormones in the sera of Shan Partridge ducks at different feeding levels and found that there was a difference between the 2 groups with respect to GLP-1 and NPY levels. The findings will serve as a reference for future research on the feeding efficiency of Shan Partridge ducks and assist in promoting their genetic breeding.


Subject(s)
Ducks , Galliformes , Animals , Ducks/genetics , Glucagon , Transcriptome , Chickens , Cholecystokinin , Eating , gamma-Aminobutyric Acid , Nitrogen , Glucagon-Like Peptide 1
4.
Front Immunol ; 14: 1142915, 2023.
Article in English | MEDLINE | ID: mdl-36969242

ABSTRACT

Introduction: This study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks. Methods: A total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days. Results: Compared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05). Conclusions: Our results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.


Subject(s)
Antioxidants , Dietary Supplements , Animals , Antioxidants/pharmacology , Ducks , Butyric Acid/pharmacology , Intestines
5.
Clin Cancer Res ; 23(8): 2038-2049, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27683179

ABSTRACT

Purpose: Antiproliferative, antiviral, and immunomodulatory activities of endogenous type I IFNs (IFN1) prompt the design of recombinant IFN1 for therapeutic purposes. However, most of the designed IFNs exhibited suboptimal therapeutic efficacies against solid tumors. Here, we report evaluation of the in vitro and in vivo antitumorigenic activities of a novel recombinant IFN termed sIFN-I.Experimental Design: We compared primary and tertiary structures of sIFN-I with its parental human IFNα-2b, as well as affinities of these ligands for IFN1 receptor chains and pharmacokinetics. These IFN1 species were also compared for their ability to induce JAK-STAT signaling and expression of the IFN1-stimulated genes and to elicit antitumorigenic effects. Effects of sIFN-I on tumor angiogenesis and immune infiltration were also tested in transplanted and genetically engineered immunocompetent mouse models.Results: sIFN-I displayed greater affinity for IFNAR1 (over IFNAR2) chain of the IFN1 receptor and elicited a greater extent of IFN1 signaling and expression of IFN-inducible genes in human cells. Unlike IFNα-2b, sIFN-I induced JAK-STAT signaling in mouse cells and exhibited an extended half-life in mice. Treatment with sIFN-I inhibited intratumoral angiogenesis, increased CD8+ T-cell infiltration, and robustly suppressed growth of transplantable and genetically engineered tumors in immunodeficient and immunocompetent mice.Conclusions: These findings define sIFN-I as a novel recombinant IFN1 with potent preclinical antitumorigenic effects against solid tumor, thereby prompting the assessment of sIFN-I clinical efficacy in humans. Clin Cancer Res; 23(8); 2038-49. ©2016 AACR.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Interferon-alpha/chemistry , Interferon-alpha/pharmacology , Animals , Female , Flow Cytometry , Humans , Immunoblotting , Interferon alpha-2 , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasms, Experimental/drug therapy , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Surface Plasmon Resonance , Xenograft Model Antitumor Assays
6.
Nucleic Acids Res ; 35(18): 6297-310, 2007.
Article in English | MEDLINE | ID: mdl-17878217

ABSTRACT

Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Bloom Syndrome/genetics , DNA Helicases/chemistry , DNA Helicases/genetics , Mutation, Missense , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , DNA/metabolism , DNA Helicases/metabolism , Humans , Models, Molecular , Molecular Sequence Data , RecQ Helicases
7.
Cell Cycle ; 5(15): 1681-6, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16880735

ABSTRACT

Bloom syndrome (BS) is a rare human autosomal recessive disorder characterized by marked genetic instability associated with greatly increased predisposition to a wide range of cancers affecting the general population. BS arises through mutations in both copies of the BLM gene which encodes a 3'-5' DNA helicase identified as a member of the RecQ family. Several studies support a major role for BLM in the cellular response to DNA damage and stalled replication forks. However, the specific function(s) of BLM remain(s) unclear. The BLM protein is strongly expressed and phosphorylated during mitosis, but very little information is available about the origin and the significance of this phosphorylation. We show here that ATM kinase provides only a limited contribution to the mitotic phosphorylation of BLM. We also demonstrate that BLM is directly phosphorylated at multiple sites in vitro by the mitotic cdc2 kinase, and identify two new sites of mitotic BLM phosphorylation: Ser-714 and Thr-766. Our results identify BLM helicase as a new substrate for cdc2, which may have potential physiological implications for the role of BLM in mitosis.


Subject(s)
Adenosine Triphosphatases/metabolism , CDC2 Protein Kinase/metabolism , DNA Helicases/metabolism , Mitosis , Adenosine Triphosphatases/chemistry , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , DNA Helicases/chemistry , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Models, Genetic , Phosphorylation , Phosphoserine/metabolism , Phosphothreonine/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , RecQ Helicases , Tumor Cells, Cultured , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...