Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776919

ABSTRACT

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Subject(s)
Feces , Fungi , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mycobiome , Humans , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Mycobiome/genetics , Gastrointestinal Microbiome/genetics , Animals , Feces/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Phylogeny , Genome, Fungal/genetics , Mice , Metagenome/genetics , Genomics , Male
2.
mSphere ; 9(4): e0067623, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38506520

ABSTRACT

Preeclampsia (PE), a pregnancy-specific syndrome, has been associated with the gut bacteriome. Here, to investigate the impact of the gut virome on the development of PE, we identified over 8,000 nonredundant viruses from the fecal metagenomes of 40 early-onset PE and 37 healthy pregnant women and profiled their abundances. Comparison and correlation analysis showed that PE-enriched viruses frequently connected to Blautia species enriched in PE. By contrast, bacteria linked to PE-depleted viruses were often the Bacteroidaceae members such as Bacteroides spp., Phocaeicola spp., Parabacteroides spp., and Alistipes shahii. In terms of viral function, PE-depleted viruses had auxiliary metabolic genes that participated in the metabolism of simple and complex polysaccharides, sulfur metabolism, lipopolysaccharide biosynthesis, and peptidoglycan biosynthesis, while PE-enriched viruses had a gene encoding cyclic pyranopterin monophosphate synthase, which seemed to be special, that participates in the biosynthesis of the molybdenum cofactor. Furthermore, the classification model based on gut viral signatures was developed to discriminate PE patients from healthy controls and showed an area under the receiver operating characteristic curve of 0.922 that was better than that of the bacterium-based model. This study opens up new avenues for further research, providing valuable insights into the PE gut virome and offering potential directions for future mechanistic and therapeutic investigations, with the ultimate goal of improving the diagnosis and management of PE.IMPORTANCEThe importance of this study lies in its exploration of the previously overlooked but potentially critical role of the gut virome in preeclampsia (PE). While the association between PE and the gut bacteriome has been recognized, this research takes a pioneering step into understanding how the gut virome, represented by over 8,000 nonredundant viruses, contributes to this condition. The findings reveal intriguing connections between PE-enriched viruses and specific gut bacteria, such as the prevalence of Blautia species in individuals with PE, contrasting with bacteria linked to PE-depleted viruses, including members of the Bacteroidaceae family. These viral interactions and associations provide a deeper understanding of the complex dynamics at play in PE.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Metagenomics , Pre-Eclampsia , Virome , Humans , Female , Pre-Eclampsia/virology , Pre-Eclampsia/microbiology , Pregnancy , Gastrointestinal Microbiome/genetics , Virome/genetics , Adult , Feces/virology , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome
3.
J Transl Med ; 22(1): 202, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38403655

ABSTRACT

BACKGROUND: The relationship between the gut mycobiome and end-stage renal disease (ESRD) remains largely unexplored. METHODS: In this study, we compared the gut fungal populations of 223 ESRD patients and 69 healthy controls (HCs) based on shotgun metagenomic sequencing data, and analyzed their associations with host serum and fecal metabolites. RESULTS: Our findings revealed that ESRD patients had a higher diversity in the gut mycobiome compared to HCs. Dysbiosis of the gut mycobiome in ESRD patients was characterized by a decrease of Saccharomyces cerevisiae and an increase in various opportunistic pathogens, such as Aspergillus fumigatus, Cladophialophora immunda, Exophiala spinifera, Hortaea werneckii, Trichophyton rubrum, and others. Through multi-omics analysis, we observed a substantial contribution of the gut mycobiome to host serum and fecal metabolomes. The opportunistic pathogens enriched in ESRD patients were frequently and positively correlated with the levels of creatinine, homocysteine, and phenylacetylglycine in the serum. The populations of Saccharomyces, including the HC-enriched Saccharomyces cerevisiae, were frequently and negatively correlated with the levels of various toxic metabolites in the feces. CONCLUSIONS: Our results provided a comprehensive understanding of the associations between the gut mycobiome and the development of ESRD, which had important implications for guiding future therapeutic studies in this field.


Subject(s)
Gastrointestinal Microbiome , Kidney Failure, Chronic , Mycobiome , Humans , Saccharomyces cerevisiae , Feces/microbiology , Metabolome
4.
Genome Biol ; 24(1): 226, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828586

ABSTRACT

BACKGROUND: The gut microbiota plays a crucial role in regulating host metabolism and producing uremic toxins in patients with end-stage renal disease (ESRD). Our objective is to advance toward a holistic understanding of the gut ecosystem and its functional capacity in such patients, which is still lacking. RESULTS: Herein, we explore the gut microbiome of 378 hemodialytic ESRD patients and 290 healthy volunteers from two independent cohorts via deep metagenomic sequencing and metagenome-assembled-genome-based characterization of their feces. Our findings reveal fundamental alterations in the ESRD microbiome, characterized by a panel of 348 differentially abundant species, including ESRD-elevated representatives of Blautia spp., Dorea spp., and Eggerthellaceae, and ESRD-depleted Prevotella and Roseburia species. Through functional annotation of the ESRD-associated species, we uncover various taxon-specific functions linked to the disease, such as antimicrobial resistance, aromatic compound degradation, and biosynthesis of small bioactive molecules. Additionally, we show that the gut microbial composition can be utilized to predict serum uremic toxin concentrations, and based on this, we identify the key toxin-contributing species. Furthermore, our investigation extended to 47 additional non-dialyzed chronic kidney disease (CKD) patients, revealing a significant correlation between the abundance of ESRD-associated microbial signatures and CKD progression. CONCLUSION: This study delineates the taxonomic and functional landscapes and biomarkers of the ESRD microbiome. Understanding the role of gut microbiota in ESRD could open new avenues for therapeutic interventions and personalized treatment approaches in patients with this condition.


Subject(s)
Gastrointestinal Microbiome , Kidney Failure, Chronic , Microbiota , Renal Insufficiency, Chronic , Humans , Metagenome , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Feces , Clostridiales
5.
Front Microbiol ; 14: 1265425, 2023.
Article in English | MEDLINE | ID: mdl-37854337

ABSTRACT

Introduction: Prolonged fasting is an intervention approach with potential benefits for individuals with obesity or metabolic disorders. Changes in gut microbiota during and after fasting may also have significant effects on the human body. Methods: Here we conducted a 7-days medically supervised water-only fasting for 46 obese volunteers and characterized their gut microbiota based on whole-metagenome sequencing of feces at five timepoints. Results: Substantial changes in the gut microbial diversity and composition were observed during fasting, with rapid restoration after fasting. The ecological pattern of the microbiota was also reassembled during fasting, reflecting the reduced metabolic capacity of diet-derived carbohydrates, while other metabolic abilities such as degradation of glycoproteins, amino acids, lipids, and organic acid metabolism, were enhanced. We identified a group of species that responded significantly to fasting, including 130 fasting-resistant (consisting of a variety of members of Bacteroidetes, Proteobacteria, and Fusobacteria) and 140 fasting-sensitive bacteria (mainly consisting of Firmicutes members). Functional comparison of the fasting-responded bacteria untangled the associations of taxon-specific functions (e.g., pentose phosphate pathway modules, glycosaminoglycan degradation, and folate biosynthesis) with fasting. Furthermore, we found that the serum and urine metabolomes of individuals were also substantially changed across the fasting procedure, and particularly, these changes were largely affected by the fasting-responded bacteria in the gut microbiota. Discussion: Overall, our findings delineated the patterns of gut microbiota alterations under prolonged fasting, which will boost future mechanistic and clinical intervention studies.

6.
Front Immunol ; 14: 1154380, 2023.
Article in English | MEDLINE | ID: mdl-37063855

ABSTRACT

Introduction: Ankylosing spondylitis (AS), a chronic autoimmune disease, has been linked to the gut bacteriome. Methods: To investigate the characteristics of the gut virome in AS, we profiled the gut viral community of 193 AS patients and 59 healthy subjects based on a metagenome-wide analysis of fecal metagenomes from two publicly available datasets. Results: AS patients revealed a significant decrease in gut viral richness and a considerable alteration of the overall viral structure. At the family level, AS patients had an increased abundance of Gratiaviridae and Quimbyviridae and a decreased abundance of Drexlerviridae and Schitoviridae. We identified 1,004 differentially abundant viral operational taxonomic units (vOTUs) between patients and controls, including a higher proportion of AS-enriched Myoviridae viruses and control-enriched Siphoviridae viruses. Moreover, the AS-enriched vOTUs were more likely to infect bacteria such as Flavonifractor, Achromobacter, and Eggerthellaceae, whereas the control-enriched vOTUs were more likely to be Blautia, Ruminococcus, Collinsella, Prevotella, and Faecalibacterium bacteriophages. Additionally, some viral functional orthologs differed significantly in frequency between the AS-enriched and control-enriched vOTUs, suggesting the functional role of these AS-associated viruses. Moreover, we trained classification models based on gut viral signatures to discriminate AS patients from healthy controls, with an optimal area under the receiver operator characteristic curve (AUC) up to 0.936, suggesting the clinical potential of the gut virome for diagnosing AS. Discussion: This work provides novel insight into the AS gut virome, and the findings may guide future mechanistic and therapeutic studies for other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Bacteriophages , Gastrointestinal Microbiome , Spondylitis, Ankylosing , Viruses , Humans , Virome , Bacteriophages/genetics
7.
J Med Virol ; 95(3): e28595, 2023 03.
Article in English | MEDLINE | ID: mdl-36811337

ABSTRACT

Although human papillomavirus (HPV) infection plays a decisive role in causing tumors, its infection is insufficient for independently promoting cancer development and other co-factors facilitate the carcinogenic process. The objective of this study was to demonstrate the association between vaginal microbiota and high-risk human papillomavirus (HR-HPV) infection in women with and without bacterial vaginosis (BV). The study included 1015 women aged 21-64 who participated in cervical cancer screening in two areas of China from 2018 to 2019. Women were collected cervical exfoliated cell specimens and reproductive tract secretions samples for HR-HPV, BV and microbial composition testing. From the non-BV & HPV- group (414 HPV-negative women without BV) to the non-BV & HPV+ group (108 HPV-positive women without BV), to the BV & HPV-group (330 HPV-negative women with BV) and then to the BV & HPV+ group (163 HPV positive-women with BV), microbial diversity increased. The relative abundance of 12 genera, including Gardnerella, Prevotella, and Sneathia increased, while Lactobacillus declined. Correlation networks of these genera and host characteristics were disrupted in the non-BV & HPV+ group, and the network trended more disordered in the BV & HPV+ group. Besides, multiple HPV infection, certain HPV genotype infection and cervical intraepithelial neoplasia (CIN) status were associated with some microbes and higher microbial diversity. HPV shifted the composition and diversity of vaginal microbiota, and BV further reinforced the trend. The relative abundance of 12 genera increased and 1 genus decreased on account of BV and HPV infection, and some genera including Lactobacillus, Prevotella, and Sneathia were associated with some specific HPV genotypes infection and CIN.


Subject(s)
Microbiota , Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/complications , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/microbiology , Papillomavirus Infections/epidemiology , Papillomavirus Infections/complications , Human Papillomavirus Viruses , Early Detection of Cancer , Vagina , Microbiota/genetics , Lactobacillus , Papillomaviridae/genetics
8.
J Adv Res ; 49: 103-114, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36198381

ABSTRACT

INTRODUCTION: Viruses have been reported as inducers of tumorigenesis. Little studies have explored the impact of the gut virome on the progression of colorectal cancer. However, there is still a problem with the repeatability of viral signatures across multiple cohorts. OBJECTIVES: The present study aimed to reveal the repeatable gut vial signatures of colorectal cancer and adenoma patients and decipher the potential of viral markers in disease risk assessment for diagnosis. METHODS: 1,282 available fecal metagenomes from 9 published studies for colorectal cancer and adenoma were collected. A gut viral catalog was constructed via a reference-independent approach. Viral signatures were identified by cross-cohort meta-analysis and used to build predictive models based on machine learning algorithms. New fecal samples were collected to validate the generalization of predictive models. RESULTS: The gut viral composition of colorectal cancer patients was drastically altered compared with healthy, as evidenced by changes in some Siphoviridae and Myoviridae viruses and enrichment of Microviridae, whereas the virome variation in adenoma patients was relatively low. Cross-cohort meta-analysis identified 405 differential viruses for colorectal cancer, including several phages of Porphyromonas, Fusobacterium, and Hungatella that were enriched in patients and some control-enriched Ruminococcaceae phages. In 9 discovery cohorts, the optimal risk assessment model obtained an average cross-cohort area under the curve of 0.830 for discriminating colorectal cancer patients from controls. This model also showed consistently high accuracy in 2 independent validation cohorts (optimal area under the curve, 0.906). Gut virome analysis of adenoma patients identified 88 differential viruses and achieved an optimal area under the curve of 0.772 for discriminating patients from controls. CONCLUSION: Our findings demonstrate the gut virome characteristics in colorectal cancer and adenoma and highlight gut virus-bacterial synergy in the progression of colorectal cancer. The gut viral signatures may be new targets for colorectal cancer treatment. In addition, high repeatability and predictive power of the prediction models suggest the potential of gut viral biomarkers in non-invasive diagnostic tests of colorectal cancer and adenoma.


Subject(s)
Adenoma , Colorectal Neoplasms , Gastrointestinal Microbiome , Viruses , Humans , Virome , Adenoma/diagnosis , Risk Assessment , Biomarkers , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/microbiology
9.
J Adv Res ; 48: 75-86, 2023 06.
Article in English | MEDLINE | ID: mdl-35995413

ABSTRACT

INTRODUCTION: Viruses in the human gut have been linked to health and disease. Deciphering the gut virome is dependent on metagenomic sequencing of the virus-like particles (VLPs) purified from the fecal specimens. A major limitation of conventional viral metagenomic sequencing is the low recoverability of viral genomes from the metagenomic dataset. OBJECTIVES: To develop an optimal method for viral amplification and metagenomic sequencing for maximizing the recovery of viral genomes. METHODS: We performed parallel virus enrichment and DNA extraction to generate âˆ¼ 30 viral DNA samples from each of 5 fresh fecal specimens and conducted the experiments including 1) optimizing the cycle number for high-fidelity enzyme-based PCR amplification, 2) evaluating the reproducibility of the optimally whole viral metagenomic experimental process, 3) evaluating the reliability of multiple displacement amplification (MDA), 4) testing the capability of long-read sequencing for improving viral metagenomic assembly, and 5) comparing the differences between viral metagenomic and bulk metagenomic approaches. RESULTS: Our results revealed that the optimal cycle number for PCR amplification is 15. We verified the reliability of MDA and the effectiveness of long-read sequencing. Based on our optimized results, we generated 151 high-quality viruses using the dataset combined from short-read and long-read sequencing. Genomic analysis of these viruses found that most (60.3%) of them were previously unknown and showed a remarkable diversity of viral functions, especially the existence of 206 viral auxiliary metabolic genes. Finally, we uncovered significant differences in the efficiency and coverage of viral identification between viral metagenomic and bulk metagenomic approaches. CONCLUSIONS: Our study demonstrates the potential of optimized experiment and sequencing strategies in uncovering viral genomes from fecal specimens, which will facilitate future research about the genome-level characterization of complex viral communities.


Subject(s)
Virome , Viruses , Humans , Reproducibility of Results , High-Throughput Nucleotide Sequencing/methods , Metagenome , Viruses/genetics , DNA, Viral/genetics
10.
Microbiol Spectr ; 10(6): e0221122, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36321901

ABSTRACT

Most microbiome studies regarding the ruminant digestive tract have focused on the rumen microbiota, whereas only a few studies were performed on investigating the gut microbiota of ruminants, which limits our understanding of this important component. Herein, the gut microbiota of 30 Caprinae animals (sheep and goats) from six provinces in China was characterized using ultradeep (>100 Gbp per sample) metagenome shotgun sequencing. An inventory of Caprinae gut microbial species containing 5,046 metagenomic assembly genomes (MAGs) was constructed. Particularly, 2,530 of the genomes belonged to uncultured candidate species. These genomes largely expanded the genomic repository of the current microbes in the Caprinae gut. Several enzymes and biosynthetic gene clusters encoded by these Caprinae gut species were identified. In summary, our study extends the gut microbiota characteristics of Caprinae and provides a basis for future studies on animal production and animal health. IMPORTANCE We constructed a microbiota catalog containing 5,046 MAGs from Caprinae gut from six regions of China. Most of the MAGs do not overlap known databases and appear to be potentially new species. We also characterized the functional spectrum of these MAGs and analyzed the differences between different regions. Our study enriches the understanding of taxonomic, functional, and metabolic diversity of Caprinae gut microbiota. We are confident that the manuscript will be of utmost interest to a wide range of readers and be widely applied in future research.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Sheep , Animals , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/metabolism , Genome, Bacterial , Metagenomics , Genome, Microbial , Ruminants
11.
Front Cell Infect Microbiol ; 12: 957439, 2022.
Article in English | MEDLINE | ID: mdl-35982777

ABSTRACT

Akkermansia muciniphila has long been considered to be the only Akkermansia species in the human gut and has been extensively studied. The present study revealed the genomic architecture of Akkermansia in the human gut by analyzing 1,126 near-complete metagenome-assembled genomes, 84 publicly available genomes, and 1 newly sequenced Akkermansia glycaniphila strain from the human gut. We found that 1) the genomes of Akkermansia were clustered into four phylogroups with distinct interspecies similarity and different genomic characteristics and 2) A. glycaniphila GP37, a strain of Akkermansia, was isolated from the human gut, whereas previously, it had only been found in python. Amuc III was present in the Chinese population, and Amuc IV was mainly distributed in Western populations. A large number of gene functions, pathways, and carbohydrate-active enzymes were specifically associated with phylogroups. Our findings based on over a thousand genomes strengthened our previous knowledge and provided new insights into the population structure and ecology of Akkermansia in the human gut.


Subject(s)
Akkermansia , Metagenome , Genomics , Humans , Sequence Analysis, DNA , Verrucomicrobia/genetics
12.
Adv Sci (Weinh) ; 9(30): e2202706, 2022 10.
Article in English | MEDLINE | ID: mdl-36031409

ABSTRACT

Emerging evidence emphasizes the functional impacts of host microbiome on the etiopathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). However, there are limited mechanistic insights into the contribution of microbial biomolecules especially microbial peptides toward modulating immune homeostasis. Here, by mining the metagenomics data of tonsillar microbiome, a deficiency of the encoding genes of lantibiotic peptides salivaricins in RA patients is identified, which shows strong correlation with circulating immune cells. Evidence is provided that the salivaricins exert immunomodulatory effects in inhibiting T follicular helper (Tfh) cell differentiation and interleukin-21 (IL-21) production. Mechanically, salivaricins directly bind to and induce conformational changes of IL-6 and IL-21 receptors, thereby inhibiting the bindings of IL-6 and IL-21 to their receptors and suppressing the downstream signaling pathway. Finally, salivaricin administration exerts both prophylactic and therapeutic effects against experimental arthritis in a murine model of RA. Together, these results provide a mechanism link of microbial peptides-mediated immunomodulation.


Subject(s)
Arthritis, Rheumatoid , Bacteriocins , Microbiota , Palatine Tonsil , Receptors, Interleukin-21 , Receptors, Interleukin-6 , Animals , Humans , Mice , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Bacteriocins/therapeutic use , Interleukin-6/metabolism , Receptors, Interleukin-21/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Palatine Tonsil/microbiology , Receptors, Interleukin-6/metabolism
13.
Microbiol Spectr ; 10(5): e0034822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36040159

ABSTRACT

Rheumatoid arthritis (RA) is influenced by oral and gut bacteria; however, much less is known about the relationship between oral or gut viromes and RA. Here, we performed whole-oral- and whole-gut-virome analyses based on shotgun sequencing of 497 samples. A comparative analysis of the oral and gut viromes in healthy controls and untreated and treated RA patients was performed, and system interaction networks among viruses, bacteria, and RA-associated clinical indices were constructed to address the potential relationship between the virome and RA by principal-coordinate analysis, distance-based redundancy analysis, permutational multivariate analysis, Spearman correlation coefficient analysis, and random-forest model analysis. The results showed that the viromes could be profiled in dental plaque, saliva, and fecal samples, among which saliva had the highest within-sample diversity. Importantly, significantly different diversities and compositions of the oral (i.e., dental plaque and saliva) viromes were observed not only between RA patients and healthy controls but also between untreated and treated RA patients, yet there were relatively minor differences in the gut viromes. Furthermore, to understand how these viruses affected the bacteriome, a virus-bacterium interaction network was constructed from dental plaque, saliva, and fecal samples of RA patients. Additionally, some RA-associated oral taxa, including Lactococcus phage (vOTU70), Bacteroides vulgatus, Lactococcus lactis, Escherichia coli, and Neisseria elongata, were correlated with the RA-related clinical indices. Whole-virome analysis illustrated the potential role of the oral and gut viromes in affecting our body either directly or via bacteria, which characterized neglected and new candidates contributing to the development of RA. IMPORTANCE Our results demonstrated community variation among dental plaque, saliva, and fecal viromes. In oral and gut samples from untreated and treated RA patients, the perturbance of viral composition and the correlation network of microbes and RA-associated clinical indices might be involved in the pathogenicity of RA. The findings in this study expand the knowledge of the potential role of oral and gut viral communities in the development of RA and may contribute to research on correlations between viruses and other diseases.


Subject(s)
Arthritis, Rheumatoid , Dental Plaque , Viruses , Humans , Virome , Dysbiosis , Viruses/genetics , Bacteria/genetics
14.
iScience ; 25(6): 104418, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35663034

ABSTRACT

The human oral cavity is a hotspot of numerous, mostly unexplored, viruses that are important for maintaining oral health and microbiome homeostasis. Here, we analyzed 2,792 publicly available oral metagenomes and proposed the Oral Virus Database (OVD) comprising 48,425 nonredundant viral genomes (≥5 kbp). The OVD catalog substantially expanded the known phylogenetic diversity and host specificity of oral viruses, allowing for enhanced delineation of some underrepresented groups such as the predicted Saccharibacteria phages and jumbo viruses. Comparisons of the viral diversity and abundance of different oral cavity habitats suggested strong niche specialization of viromes within individuals. The virome variations in relation to host geography and properties were further uncovered, especially the age-dependent viral compositional signatures in saliva. Overall, the viral genome catalog describes the architecture and variability of the human oral virome, while offering new resources and insights for current and future studies.

15.
Front Microbiol ; 12: 673969, 2021.
Article in English | MEDLINE | ID: mdl-34489882

ABSTRACT

Accumulated evidence shows that complex microbial communities resides in the healthy human urinary tract and can change in urological disorders. However, there lacks a comprehensive profiling of the genitourinary microbiota in healthy cohort. Here, we performed 16S rRNA gene sequencing of midstream urine specimens from 1,172 middle-aged and elderly healthy individuals. The core microbiota included 6 dominant genera (mean relative abundance >5%), including Prevotella, Streptococcus, Lactobacillus, Gardnerella, Escherichia-Shigella, and Veillonella, and 131 low-abundance genera (0.01-5%), displaying a distinct microbiome profiles to that of host-matched gut microbiota. The composition and diversity of genitourinary microbiome (GM) were distinct between genders and may fluctuate with ages. Several urotypes were identified by the stratification of microbiome profiles, which were mainly dominated by the six most predominant genera. The prevalence of urotypes was disparate between genders, and the male sample additionally harbored other urotypes dominated by Acinetobacter, Corynebacterium, Staphylococcus, or Sphingomonas. Peptoniphilus, Ezakiella, and Porphyromonas were co-occurred and co-abundant, and they may play crucial roles as keystone genera and be associated with increased microbial diversity. Our results delineated the microbial structure and diversity landscape of the GM in healthy middle-aged and elderly adults and provided insights into the influence of gender and age to it.

16.
Front Cell Infect Microbiol ; 11: 549678, 2021.
Article in English | MEDLINE | ID: mdl-33718259

ABSTRACT

Gestational diseases are associated with altered intestinal microbiota in pregnant women. Characterizing the gut microbiota of gestational anemia (GA) may describe a novel role of gut microbial abnormality in GA. In this study, we investigated differences in gut microbiota between GA patients and healthy pregnant women from the first trimester (n = 24 vs. 54) and the third trimester (n = 30 vs. 56) based on the 16S rRNA gene sequencing method. No statistically significant differences in α-diversity were identified between GA patients and controls in the first trimester of pregnancy, whereas the Shannon index and observed OTUs were significantly lower in GA patients than in healthy controls in the third trimester. Distance-based redundancy analysis revealed striking differences in microbial communities in the third trimester between GA patients and controls. Four genera were significantly different in relative abundance between GA patients and healthy controls, while 12 genera differentiated significantly between GA patients and healthy controls in the third trimester. At the operational taxonomic unit (OTU) level, 17 OTUs and 30 OTUs were identified to be different between GA patients and healthy controls in the first and third trimesters, respectively. Changes in gut microbial composition of GA patients suggest a potential relation with GA, and provide insights into the prediction and intervention of gestational anemia.


Subject(s)
Anemia , Gastrointestinal Microbiome , Microbiota , Female , Humans , Pregnancy , Pregnancy Trimester, Third , RNA, Ribosomal, 16S/genetics
18.
NPJ Biofilms Microbiomes ; 6(1): 32, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917878

ABSTRACT

The woman's gut microbiota during pregnancy may support nutrient acquisition, is associated with diseases, and has been linked to infant health. However, there is limited information on gut microbial characteristics and dependence in pregnant women. In this study, we provide a comprehensive overview of the gut microbial characteristics of 1479 pregnant women using 16S rRNA gene sequencing of fecal samples. We identify a core microbiota of pregnant women, which displays a similar overall structure to that of age-matched nonpregnant women. Our data show that the gestational age-associated variation in the gut microbiota, from the ninth week of gestation to antepartum, is relatively limited. Building upon rich metadata, we reveal a set of exogenous and intrinsic host factors that are highly correlated with the variation in gut microbial community composition and function. These microbiota covariates are concentrated in basic host properties (e.g., age and residency status) and blood clinical parameters, suggesting that individual heterogeneity is the major force shaping the gut microbiome during pregnancy. Moreover, we identify microbial and functional markers that are associated with age, pre-pregnancy body mass index, residency status, and pre-pregnancy and gestational diseases. The gut microbiota during pregnancy is also different between women with high or low gestational weight gain. Our study demonstrates the structure, gestational age-associated variation, and associations with host factors of the gut microbiota during pregnancy and strengthens the understanding of microbe-host interactions. The results from this study offer new materials and prospects for gut microbiome research in clinical and diagnostic fields.


Subject(s)
Bacteria/classification , Pregnant Women , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Adult , Bacteria/genetics , Bacteria/isolation & purification , Biological Variation, Individual , Body Mass Index , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Feces/microbiology , Female , Gastrointestinal Microbiome , Gestational Age , Humans , Maternal Age , Phylogeny , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...