Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Pept Sci ; : e3600, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623834

ABSTRACT

Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.

2.
Br J Pharmacol ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679457

ABSTRACT

BACKGROUND AND PURPOSE: Chronic inflammation plays a pivotal role in the development of Type 2 diabetes mellitus (T2DM). Previous studies have shown that haem oxygenase-1 (HO-1) plays a proinflammatory role during metabolic stress, suggesting that HO-1 inhibition could be an effective strategy to treat T2DM. However, the application of HO-1 inhibitors is restricted due to solubility-limited bioavailability. In this study, we encapsulated the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP), within nanoparticles and investigated their role in regulating glucose homeostasis and chronic inflammation during obesity. EXPERIMENTAL APPROACH: We delivered DMSO-dissolved ZnPP (DMSO-ZnPP) and ZnPP-laden nanoparticles (Nano-ZnPP) to diet-induced obese male mice for 6 weeks. Glucose and insulin tolerance tests were carried out, liver and adipose tissue gene expression profiles analysed, and systemic inflammation analysed using flow cytometry. KEY RESULTS: Nanoparticles significantly increased the delivery efficiency of ZnPP in both cells and mice. In mice with diet-induced obesity, inhibition of HO-1 by Nano-ZnPP significantly decreased adiposity, increased insulin sensitivity, and improved glucose tolerance. Moreover, Nano-ZnPP treatment attenuated both local and systemic inflammatory levels during obesity. Mechanistically, Nano-ZnPP significantly attenuated glucagon, TNF, and fatty acid synthesis signalling pathways in the liver. In white adipose tissue, the oxidative phosphorylation signalling pathway was enhanced and the inflammation signalling pathway diminished by Nano-ZnPP. Our results show that Nano-ZnPP has better effects on the improvement of glucose homeostasis and attenuation of chronic inflammation, than those of DMSO-dissolved ZnPP. CONCLUSIONS AND IMPLICATIONS: These findings indicate that ZnPP-laden nanoparticles are potential therapeutic agents for treating T2DM.

3.
Nat Commun ; 15(1): 3410, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649684

ABSTRACT

Estrogen receptor α (ERα) plays a crucial role in regulating glucose and energy homeostasis during type 2 diabetes mellitus (T2DM). However, the underlying mechanisms remain incompletely understood. Here we find a ligand-independent effect of ERα on the regulation of glucose homeostasis. Deficiency of ERα in the liver impairs glucose homeostasis in male, female, and ovariectomized (OVX) female mice. Mechanistic studies reveal that ERα promotes hepatic insulin sensitivity by suppressing ubiquitination-induced IRS1 degradation. The ERα 1-280 domain mediates the ligand-independent effect of ERα on insulin sensitivity. Furthermore, we identify a peptide based on ERα 1-280 domain and find that ERα-derived peptide increases IRS1 stability and enhances insulin sensitivity. Importantly, administration of ERα-derived peptide into obese mice significantly improves glucose homeostasis and serum lipid profiles. These findings pave the way for the therapeutic intervention of T2DM by targeting the ligand-independent effect of ERα and indicate that ERα-derived peptide is a potential insulin sensitizer for the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Estrogen Receptor alpha , Glucose , Homeostasis , Insulin Resistance , Liver , Obesity , Animals , Female , Humans , Male , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Estrogen Receptor alpha/metabolism , Glucose/metabolism , Homeostasis/drug effects , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Liver/drug effects , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Obesity/drug therapy , Ovariectomy , Peptides/pharmacology , Ubiquitination/drug effects
4.
Water Sci Technol ; 89(4): 989-1002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423613

ABSTRACT

Using electrolytic zero-valent iron-activated sodium hypochlorite (EZVI-NaClO) to pretreat sludge, the capillary suction time (CST) was utilized to evaluate sludge dewaterability. Ammonia nitrogen (NH4-N), dissolved phosphorus, and total phosphorus in the supernatant were used to analyze sludge disintegration. This approach aimed to evaluate the effectiveness of the pretreatment process and its impact on the sludge composition. The migration and transformation of extracellular polymeric substances (EPS), including dissolved EPS (S-EPS), loosely boundEPS, and tightly bound-EPS (TB-EPS), were analyzed by detecting protein and polysaccharide concentrations and three-dimensional fluorescence excitation-emission spectroscopy (3D-EEM). The sludge particle properties, including sludge viscosity and particle size, were also analyzed. The results suggested that the optimal pH value, NaClO dosage, current, and reaction time were 2, 100 mg/gDS (dry sludge), 0.2A, and 30 min, respectively, with a CST reduction of 43%. Protein and polysaccharide contents in TB-EPS were significantly reduced in the EZVI-NaClO group. Conversely, protein and polysaccharides contents in S-EPS increased, suggesting that EZVI-NaClO treatment could disrupt the EPS. Besides, the viscosity of the treated sludge decreased from 195.4 to 54.9 mPa·S, indicating that sludge fluidity became better. ZEVI-NaClO could enhance sludge dewaterability by destructing protein and polysaccharide structure and improving sludge hydrophobicity.


Subject(s)
Sewage , Sodium Hypochlorite , Sewage/chemistry , Proteins , Polysaccharides , Iron/chemistry , Phosphorus , Water/chemistry , Waste Disposal, Fluid/methods
5.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397103

ABSTRACT

Hyperglycemia is a hallmark of type 2 diabetes (T2D). Metformin, the first-line drug used to treat T2D, maintains blood glucose within a normal range by suppressing hepatic glucose production (HGP). However, resistance to metformin treatment is developed in most T2D patients over time. Transforming growth factor beta 1 (TGF-ß1) levels are elevated both in the liver and serum of T2D humans and mice. Here, we found that TGF-ß1 treatment impairs metformin action on suppressing HGP via inhibiting AMPK phosphorylation at Threonine 172 (T172). Hepatic TGF-ß1 deficiency improves metformin action on glycemic control in high fat diet (HFD)-induced obese mice. In our hepatic insulin resistant mouse model (hepatic insulin receptor substrate 1 (IRS1) and IRS2 double knockout (DKO)), metformin action on glycemic control was impaired, which is largely improved by further deletion of hepatic TGF-ß1 (TKObeta1) or hepatic Foxo1 (TKOfoxo1). Moreover, blockade of TGF-ß1 signaling by chemical inhibitor of TGF-ß1 type I receptor LY2157299 improves to metformin sensitivity in mice. Taken together, our current study suggests that hepatic TGF-ß1 signaling impairs metformin action on glycemic control, and suppression of TGF-ß1 signaling could serve as part of combination therapy with metformin for T2D treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Mice , Animals , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Transforming Growth Factor beta1/metabolism , Glycemic Control , Glucose/metabolism
6.
Mol Metab ; 79: 101852, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092245

ABSTRACT

OBJECTIVE: Obesity-associated chronic inflammation, aka meta-inflammation, is a key pathogenic driver for obesity-associated comorbidity. Growth hormone secretagogue receptor (GHSR) is known to mediate the effects of nutrient-sensing hormone ghrelin in food intake and fat deposition. We previously reported that global Ghsr ablation protects against diet-induced inflammation and insulin resistance, but the site(s) of action and mechanism are unknown. Macrophages are key drivers of meta-inflammation. To unravel the role of GHSR in macrophages, we generated myeloid-specific Ghsr knockout mice (LysM-Cre;Ghsrf/f). METHODS: LysM-Cre;Ghsrf/f and control Ghsrf/f mice were subjected to 5 months of high-fat diet (HFD) feeding to induce obesity. In vivo, metabolic profiling of food intake, physical activity, and energy expenditure, as well as glucose and insulin tolerance tests (GTT and ITT) were performed. At termination, peritoneal macrophages (PMs), epididymal white adipose tissue (eWAT), and liver were analyzed by flow cytometry and histology. For ex vivo studies, bone marrow-derived macrophages (BMDMs) were generated from the mice and treated with palmitic acid (PA) or lipopolysaccharide (LPS). For in vitro studies, macrophage RAW264.7 cells with Ghsr overexpression or Insulin receptor substrate 2 (Irs2) knockdown were studied. RESULTS: We found that Ghsr expression in PMs was increased under HFD feeding. In vivo, HFD-fed LysM-Cre;Ghsrf/f mice exhibited significantly attenuated systemic inflammation and insulin resistance without affecting food intake or body weight. Tissue analysis showed that HFD-fed LysM-Cre;Ghsrf/f mice have significantly decreased monocyte/macrophage infiltration, pro-inflammatory activation, and lipid accumulation, showing elevated lipid-associated macrophages (LAMs) in eWAT and liver. Ex vivo, Ghsr-deficient macrophages protected against PA- or LPS-induced pro-inflammatory polarization, showing reduced glycolysis, increased fatty acid oxidation, and decreased NF-κB nuclear translocation. At molecular level, GHSR metabolically programs macrophage polarization through PKA-CREB-IRS2-AKT2 signaling pathway. CONCLUSIONS: These novel results demonstrate that macrophage GHSR plays a key role in the pathogenesis of meta-inflammation, and macrophage GHSR promotes macrophage infiltration and induces pro-inflammatory polarization. These exciting findings suggest that GHSR may serve as a novel immunotherapeutic target for the treatment of obesity and its associated comorbidity.


Subject(s)
Insulin Resistance , Receptors, Ghrelin , Mice , Animals , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Insulin Resistance/physiology , Lipopolysaccharides/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice, Knockout , Obesity/metabolism , Nutrients
7.
Cell Mol Gastroenterol Hepatol ; 17(1): 41-58, 2024.
Article in English | MEDLINE | ID: mdl-37678798

ABSTRACT

BACKGROUND & AIMS: The O-class of the forkhead transcription factor FoxO1 is a crucial factor mediating insulin→PI3K→Akt signaling and governs diverse cellular processes. However, the role of hepatocyte FoxO1 in liver fibrosis has not been well-established. In his study, we investigated the role of hepatocyte FoxO1 in liver fibrosis and uncovered the underlying mechanisms. METHODS: Liver fibrosis was established by carbon tetrachloride (CCL4) administration and compared between liver-specific deletion of FoxO1 deletion (F1KO) and control (CNTR) mice. Using genetic and bioinformatic strategies in vitro and in vivo, the role of hepatic FoxO1 in liver fibrosis and associated mechanisms was established. RESULTS: Increased FoxO1 expression and FoxO1 signaling activation were observed in CCL4-induced fibrosis. Hepatic FoxO1 deletion largely attenuated CCL4-induced liver injury and fibrosis compared with CNTR mice. F1KO mice showed ameliorated CCL4-induced hepatic inflammation and decreased TGF-ß1 mRNA and protein levels compared with those of CNTR mice. In primary hepatocytes, FoxO1 deficiency reduced TGF-ß1 expression and secretion. Conditioned medium (CM) collected from wild-type hepatocytes treated with CCL4 activated human HSC cell line (LX-2); such effect was attenuated by FoxO1 deletion in primary hepatocytes or neutralization of TGF-ß1 in the CM using TGF-ß1 antibody. Hepatic FoxO1 overexpression in CNTR mice promoted CCL4-induced HSC activation; such effect was blocked in L-TGF-ß1KO mice. CONCLUSIONS: Hepatic FoxO1 mediates CCL4-inducled liver fibrosis via upregulating hepatocyte TGF-ß1 expression, stimulating hepatic inflammation and TGF-ß1-mediated HSC activation. Hepatic FoxO1 may be a therapeutic target for prevention and treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Transforming Growth Factor beta1 , Animals , Humans , Mice , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Inflammation/pathology , Liver Cirrhosis/genetics , Transforming Growth Factor beta1/metabolism
8.
Toxicon ; 238: 107588, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38147939

ABSTRACT

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Subject(s)
Arthropod Venoms , Bacillus thuringiensis , Insecticides , Moths , Neonicotinoids , Nitro Compounds , Toxins, Biological , Humans , Infant, Newborn , Animals , Insecticides/toxicity , Glycine max , Helicoverpa armigera , Bacillus thuringiensis Toxins/pharmacology , Larva , Insecta , Toxins, Biological/pharmacology , Arthropod Venoms/pharmacology , Biological Assay , Plant Leaves , Bacterial Proteins/pharmacology , Hemolysin Proteins/toxicity , Endotoxins , Pest Control, Biological , Insecticide Resistance
9.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140952, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37640250

ABSTRACT

Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.


Subject(s)
Sea Anemones , Animals , Humans , Sea Anemones/chemistry , Proteomics , Drosophila melanogaster/metabolism , Australia , Peptides/chemistry , Disulfides , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
10.
Nutrients ; 15(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960324

ABSTRACT

Insulin resistance is an important feature of metabolic syndrome and a precursor of type 2 diabetes mellitus (T2DM). Overnutrition-induced obesity is a major risk factor for the development of insulin resistance and T2DM. The intake of macronutrients plays a key role in maintaining energy balance. The components of macronutrients distinctly regulate insulin sensitivity and glucose homeostasis. Precisely adjusting the beneficial food compound intake is important for the prevention of insulin resistance and T2DM. Here, we reviewed the effects of different components of macronutrients on insulin sensitivity and their underlying mechanisms, including fructose, dietary fiber, saturated and unsaturated fatty acids, and amino acids. Understanding the diet-gene interaction will help us to better uncover the molecular mechanisms of T2DM and promote the application of precision nutrition in practice by integrating multi-omics analysis.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/etiology , Nutrients , Glucose , Homeostasis , Insulin
11.
Aging Cell ; 22(10): e13968, 2023 10.
Article in English | MEDLINE | ID: mdl-37602516

ABSTRACT

The liver is a key metabolic organ that maintains whole-body nutrient homeostasis. Aging-induced liver function alterations contribute to systemic susceptibility to aging-related diseases. However, the molecular mechanisms of liver aging remain insufficiently understood. In this study, we performed bulk RNA-Seq and single-cell RNA-Seq analyses to investigate the underlying mechanisms of the aging-induced liver function changes. We found that liver inflammation, glucose intolerance, and liver fat deposition were aggravated in old mice. Aging significantly increased pro-inflammation in hepatic macrophages. Furthermore, we found that Kupffer cells (KCs) were the major driver to induce pro-inflammation in hepatic macrophages during aging. In KCs, aging significantly increased pro-inflammatory levels; in monocyte-derived macrophages (MDMs), aging had a limited effect on pro-inflammation but led to a functional quiescence in antigen presentation and phagosome process. In addition, we identified an aging-responsive KC-specific (ARKC) gene set that potentially mediates aging-induced pro-inflammation in KCs. Interestingly, FOXO1 activity was significantly increased in the liver of old mice. FOXO1 inhibition by AS1842856 significantly alleviated glucose intolerance, hepatic steatosis, and systemic inflammation in old mice. FOXO1 inhibition significantly attenuated aging-induced pro-inflammation in KCs partially through downregulation of ARKC genes. However, FOXO1 inhibition had a limited effect on aging-induced functional quiescence in MDMs. These results indicate that aging induces pro-inflammation in liver mainly through targeting KCs and FOXO1 is a key player in aging-induced pro-inflammation in KCs. Thus, FOXO1 could be a potential therapeutic target for the treatment of age-associated chronic diseases.


Subject(s)
Fatty Liver , Glucose Intolerance , Animals , Mice , Fatty Liver/metabolism , Glucose Intolerance/metabolism , Inflammation/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Macrophages/metabolism
12.
Toxins (Basel) ; 15(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37505687

ABSTRACT

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Subject(s)
Spider Venoms , Venoms , Animals , Venoms/pharmacology , Brazil , Mosquito Vectors , Peptides/pharmacology , Insecta , Spider Venoms/toxicity , Spider Venoms/chemistry
13.
Am J Pathol ; 193(9): 1143-1155, 2023 09.
Article in English | MEDLINE | ID: mdl-37263346

ABSTRACT

Dysregulation of hepatocyte apoptosis is associated with several types of chronic liver diseases. Transforming growth factor-ß1 (TGF-ß1) is a well-known pro-apoptotic factor in the liver, which constitutes a receptor complex composed of TGF-ß receptor I and II, along with transcription factor Smad proteins. As a member of the forkhead box O (Foxo) class of transcription factors, Foxo1 is a predominant regulator of hepatic glucose production and apoptosis. This study investigated the potential relationship between TGF-ß1 signaling and Foxo1 in control of apoptosis in hepatocytes. TGF-ß1 induced hepatocyte apoptosis in a Foxo1-dependent manner in hepatocytes isolated from both wild-type and liver-specific Foxo1 knockout mice. TGF-ß1 activated protein kinase A through TGF-ß receptor I-Smad3, followed by phosphorylation of Foxo1 at Ser273 in promotion of apoptosis in hepatocytes. Moreover, Smad3 overexpression in the liver of mice promoted the levels of phosphorylated Foxo1-S273, total Foxo1, and a Foxo1-target pro-apoptotic gene Bim, which eventually resulted in hepatocyte apoptosis. The study further demonstrated a crucial role of Foxo1-S273 phosphorylation in the pro-apoptotic effect of TGF-ß1 by using hepatocytes isolated from Foxo1-S273A/A knock-in mice, in which the phosphorylation of Foxo1-S273 was disrupted. Taken together, this study established a novel role of TGF-ß1→protein kinase A→Foxo1 signaling cascades in control of hepatocyte survival.


Subject(s)
Transcription Factors , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Transcription Factors/metabolism , Forkhead Box Protein O1/metabolism , Hepatocytes/metabolism , Apoptosis , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/metabolism , Forkhead Transcription Factors/metabolism
14.
Diabetes ; 72(9): 1193-1206, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37343276

ABSTRACT

Obesity and insulin resistance are risk factors for the pathogenesis of type 2 diabetes (T2D). Here, we report that hepatic TGF-ß1 expression positively correlates with obesity and insulin resistance in mice and humans. Hepatic TGF-ß1 deficiency decreased blood glucose levels in lean mice and improved glucose and energy dysregulations in diet-induced obese (DIO) mice and diabetic mice. Conversely, overexpression of TGF-ß1 in the liver exacerbated metabolic dysfunctions in DIO mice. Mechanistically, hepatic TGF-ß1 and Foxo1 are reciprocally regulated: fasting or insulin resistance caused Foxo1 activation, increasing TGF-ß1 expression, which, in turn, activated protein kinase A, stimulating Foxo1-S273 phosphorylation to promote Foxo1-mediated gluconeogenesis. Disruption of TGF-ß1→Foxo1→TGF-ß1 looping by deleting TGF-ß1 receptor II in the liver or by blocking Foxo1-S273 phosphorylation ameliorated hyperglycemia and improved energy metabolism in adipose tissues. Taken together, our studies reveal that hepatic TGF-ß1→Foxo1→TGF-ß1 looping could be a potential therapeutic target for prevention and treatment of obesity and T2D. ARTICLE HIGHLIGHTS: Hepatic TGF-ß1 levels are increased in obese humans and mice. Hepatic TGF-ß1 maintains glucose homeostasis in lean mice and causes glucose and energy dysregulations in obese and diabetic mice. Hepatic TGF-ß1 exerts an autocrine effect to promote hepatic gluconeogenesis via cAMP-dependent protein kinase-mediated Foxo1 phosphorylation at serine 273, endocrine effects on brown adipose tissue action, and inguinal white adipose tissue browning (beige fat), causing energy imbalance in obese and insulin-resistant mice. TGF-ß1→Foxo1→TGF-ß1 looping in hepatocytes plays a critical role in controlling glucose and energy metabolism in health and disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Energy Metabolism , Gluconeogenesis , Animals , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/genetics , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gluconeogenesis/genetics , Glucose/metabolism , Insulin Resistance , Liver/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Transforming Growth Factor beta1/pharmacology
15.
Diabetologia ; 66(7): 1322-1339, 2023 07.
Article in English | MEDLINE | ID: mdl-37202506

ABSTRACT

AIMS/HYPOTHESIS: Hyperglucagonaemia-stimulated hepatic glucose production (HGP) contributes to hyperglycaemia during type 2 diabetes. A better understanding of glucagon action is important to enable efficient therapies to be developed for the treatment of diabetes. Here, we aimed to investigate the role of p38 MAPK family members in glucagon-induced HGP and determine the underlying mechanisms by which p38 MAPK regulates glucagon action. METHODS: p38α, ß, γ and δ MAPK siRNAs were transfected into primary hepatocytes, followed by measurement of glucagon-induced HGP. Adeno-associated virus serotype 8 carrying p38α MAPK short hairpin RNA (shRNA) was injected into liver-specific Foxo1 knockout, liver-specific Irs1/Irs2 double knockout and Foxo1S273D knockin mice. Foxo1S273A knockin mice were fed a high-fat diet for 10 weeks. Pyruvate tolerance tests, glucose tolerance tests, glucagon tolerance tests and insulin tolerance tests were carried out in mice, liver gene expression profiles were analysed and serum triglyceride, insulin and cholesterol levels were measured. Phosphorylation of forkhead box protein O1 (FOXO1) by p38α MAPK in vitro was analysed by LC-MS. RESULTS: We found that p38α MAPK, but not the other p38 isoforms, stimulates FOXO1-S273 phosphorylation and increases FOXO1 protein stability, promoting HGP in response to glucagon stimulation. In hepatocytes and mouse models, inhibition of p38α MAPK blocked FOXO1-S273 phosphorylation, decreased FOXO1 levels and significantly impaired glucagon- and fasting-induced HGP. However, the effect of p38α MAPK inhibition on HGP was abolished by FOXO1 deficiency or a Foxo1 point mutation at position 273 from serine to aspartic acid (Foxo1S273D) in both hepatocytes and mice. Moreover, an alanine mutation at position 273 (Foxo1S273A) decreased glucose production, improved glucose tolerance and increased insulin sensitivity in diet-induced obese mice. Finally, we found that glucagon activates p38α through exchange protein activated by cAMP 2 (EPAC2) signalling in hepatocytes. CONCLUSIONS/INTERPRETATION: This study found that p38α MAPK stimulates FOXO1-S273 phosphorylation to mediate the action of glucagon on glucose homeostasis in both health and disease. The glucagon-induced EPAC2-p38α MAPK-pFOXO1-S273 signalling pathway is a potential therapeutic target for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Mitogen-Activated Protein Kinase 14 , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Glucagon/metabolism , Gluconeogenesis/genetics , Glucose/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphorylation
16.
BMC Biol ; 21(1): 121, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226201

ABSTRACT

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Subject(s)
Sea Anemones , Animals , Sea Anemones/genetics , Genomics , Chromosome Inversion , Cysteine , Disulfides
17.
Lab Invest ; 103(1): 100017, 2023 01.
Article in English | MEDLINE | ID: mdl-36748194

ABSTRACT

FoxO1 is an important transcriptional factor that regulates cell survival and metabolism in many tissues. Deleting FoxO1 results in embryonic death due to failure of chorioallantoic fusion at E8.5; however, its role in placental development during mid-late gestation is unclear. In both human patients with gestational diabetes and pregnant mice with hyperglycemia, placental FoxO1 expression was significantly increased. Using FoxO1+/- mice, the effects of FoxO1 haploinsufficiency on placental development under normoglycemia and hyperglycemia were investigated. With FoxO1 haploinsufficiency, the term placental weight increased under both normal and hyperglycemic conditions. Under normoglycemia, this weight change was associated with a general enlargement of the labyrinth, along with increased cell proliferation, decreased cell apoptosis, and decreased expression of p21, p27, Casp3, Casp8, and Rip3. However, under hyperglycemia, the placental weight change was associated with increased fetal blood space, VEGFA overexpression, and expression changes of the angiogenic markers, Eng and Tsp1. In conclusion, FoxO1 plays a role in regulating cell proliferation, cell survival, or angiogenesis, depending on blood glucose levels, during placenta development.


Subject(s)
Diabetes, Gestational , Forkhead Box Protein O1 , Hyperglycemia , Animals , Female , Humans , Mice , Pregnancy , Cell Proliferation/genetics , Diabetes, Gestational/genetics , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation , Hyperglycemia/genetics , Hyperglycemia/metabolism , Placenta/metabolism
18.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3385-3392, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511378

ABSTRACT

Ecological comprehensive index can quantitatively and visually analyze the temporal and spatial variations of ecological environment quality in a region. Based on the five indices of fractional vegetation coverage, leaf area index, total primary productivity, land surface temperature and wetness obtained by MODIS satellite data in 2001, 2005, 2010, 2015 and 2020, and coupled the comprehensive quality of the eco-environment (K), we analyzed the temporal and spatial variations of ecological quality along the Yellow River of Shanxi Province from 2001 to 2020 by using the principal component analysis and spatial autocorrelation method. The results showed that the mean value of K in the study area increased from 0.3354 to 0.4389 during 2001-2020. The ecological quality along the Yellow River of Shanxi Province improved overall, but with obvious temporal and spatial variations. On the large scale, it presented a pattern of "better in the south and worse in the north". There was difference between hills and mountains on the small scale. It showed a trend of continuous improvement in time, but the rate of change was different. The trend of improvement in the south was stronger than that in the north. From 2001 to 2020, the global Moran I values of K were all greater than 0.93, indicating that the ecological quality along the Yellow River of Shanxi Province had a strong spatial correlation. The types of spatial agglomeration were mainly high-high and low-low. The high-high agglomeration areas were mainly distributed in blocks in the south, while the low-low agglomeration areas were mainly concentrated in the north. The ecological quality of areas alone the Yellow River of Shanxi Province had been greatly improved during the research period, but there was still obvious spatial heterogeneity, which need to strengthen ecological protection.


Subject(s)
Ecosystem , Rivers , Spatial Analysis , China , Temperature
19.
J Biol Chem ; 298(9): 102283, 2022 09.
Article in English | MEDLINE | ID: mdl-35863429

ABSTRACT

Knockout of the transcription factor X-box binding protein (XBP1) is known to decrease liver glucose production and lipogenesis. However, whether insulin can regulate gluconeogenesis and lipogenesis through XBP1 and how insulin activates the inositol-requiring enzyme-XBP1 ER stress pathway remains unexplored. Here, we report that in the fed state, insulin-activated kinase AKT directly phosphorylates inositol-requiring enzyme 1 at S724, which in turn mediates the splicing of XBP1u mRNA, thus favoring the generation of the spliced form, XBP1s, in the liver of mice. Subsequently, XBP1s stimulate the expression of lipogenic genes and upregulates liver lipogenesis as previously reported. Intriguingly, we find that fasting leads to an increase in XBP1u along with a drastic decrease in XBP1s in the liver of mice, and XBP1u, not XBP1s, significantly increases PKA-stimulated CRE reporter activity in cultured hepatocytes. Furthermore, we demonstrate that overexpression of XBP1u significantly increases cAMP-stimulated expression of rate-limiting gluconeogenic genes, G6pc and Pck1, and glucose production in primary hepatocytes. Reexpression of XBP1u in the liver of mice with XBP1 depletion significantly increases fasting blood glucose levels and gluconeogenic gene expression. These data support an important role of XBP1u in upregulating gluconeogenesis in the fasted state. Taken together, we reveal that insulin signaling via AKT controls the expression of XBP1 isoforms and that XBP1u and XBP1s function in different nutritional states to regulate liver gluconeogenesis and lipogenesis, respectively.


Subject(s)
Blood Glucose , Endoplasmic Reticulum Stress , Insulin , Lipid Metabolism , Membrane Proteins , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Blood Glucose/metabolism , Inositol/metabolism , Insulin/metabolism , Lipid Metabolism/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
20.
Redox Biol ; 54: 102377, 2022 08.
Article in English | MEDLINE | ID: mdl-35763934

ABSTRACT

The metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is a long noncoding RNA (lncRNA) and is known for its role in cancer development and prognosis. In this study, we report that MALAT1 plays an important role in regulating acute inflammatory responses in sepsis. In patient samples, MALAT1 expression was positively correlated with severity of sepsis. In cultured macrophages, LPS treatment significantly induced MALAT1 expression, while genetic ablation of MALAT1 greatly reduced proinflammatory cytokine levels. Furthermore, MALAT1-ablated mice had significantly increased survival rates in cecal ligation and puncture (CLP)-induced sepsis and LPS-induced endotoxemia. One novel and salient feature of MALAT1-ablated mice is greatly reduced ROS level in macrophages and other cell types and increased glutathione/oxidized glutathione (GSH/GSSG) ratio in macrophages, suggesting an increased antioxidant capacity. We showed a mechanism for MALAT1 ablation leading to enhanced antioxidant capacity is through activation of methionine cycle by epitranscriptomical regulation of methionine adenosyltransferase 2A (MAT2A). MAT2A 3'UTR can be methylated by METTL16 which was known to directly bind to MALAT1. MALAT1 ablation was found to reduce methylation in MAT2A hairpin1 and increase MAT2A protein levels. Our results suggest a MALAT1-METTL16-MAT2A interactive axis which may be targeted for treatments of sepsis.


Subject(s)
Adenocarcinoma , MicroRNAs , RNA, Long Noncoding/genetics , Sepsis , Animals , Antioxidants , Lipopolysaccharides , Mice , MicroRNAs/genetics , Sepsis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...