Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Public Health ; 24(1): 2498, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272038

ABSTRACT

BACKGROUND: Thyroid disorders(TD) poses a significant health threat to Americans due to its high incidence rate. Obesity, a common factor linked to thyroid disorders, has garnered increasing attention. While Body mass index (BMI) is a widely used obesity index, it fails to account for the distribution of muscle and fat in the body. Recently, tMFR has emerged as a crucial obesity index in clinical research, warranting further investigation into its association with TD. OBJECTIVE: Exploring the association between tMFR and thyroid disorders. METHOD: A comprehensive survey and data analysis were conducted using the NHANES database to investigate the relationship between tMFR and the risk of TD. This study utilized multiple logistic regression, smooth curve fitting, and subgroup analysis across four periods from 2011 to 2018. RESULT: A total of 11,912 subjects were included in the study, showing a prevalence of 7.14% for TD. The research indicated that tMFR had an inverse correlation with the risk of TD in a comprehensive model (OR = 0.90, 95% CI 0.82 to 1.00). When tMFR was divided into quartiles (Q1-Q4), individuals in the highest quartile had a 28% lower risk of TD than those in Q1 (OR = 0.72, 95% CI 0.57 to 0.91). Analysis using smoothed curve fitting demonstrated a nonlinear relationship between tMFR and TD risk, with the inflection point for tMFR saturation effect identified as 1.5. Subgroup analysis further confirmed the strong association between tMFR and TD risk. Receiver operating characteristic (ROC) curve analysis indicated that tMFR exhibited superior predictive ability for TD relative to BMI. CONCLUSION: The study found a negative association between tMFR and the risk of TD; however, additional prospective studies are required to validate these findings.


Subject(s)
Nutrition Surveys , Thyroid Diseases , Humans , Cross-Sectional Studies , Male , Female , Thyroid Diseases/epidemiology , Middle Aged , Adult , United States/epidemiology , Adipose Tissue , Risk Factors , Body Mass Index , Obesity/epidemiology , Aged , Young Adult , Prevalence , Muscle, Skeletal
2.
Front Pharmacol ; 15: 1373663, 2024.
Article in English | MEDLINE | ID: mdl-38545549

ABSTRACT

Introduction: The objective of this study is to systematically evaluate the effect of ligustrazine on animal models of ischemic stroke and investigate its mechanism of action. Materials and Methods: The intervention of ligustrazine in ischemic diseases research on stroke model animals was searched in the Chinese National Knowledge Infrastructure (CNKI), Wanfang Database (Wanfang), VIP Database (VIP), Chinese Biomedical Literature Database (CBM), Cochrane Library, PubMed, Web of Science, and Embase databases. The quality of the included literature was evaluated using the Cochrane risk of bias tool. The evaluation included measures such as neurological deficit score (NDS), percentage of cerebral infarction volume, brain water content, inflammation-related factors, oxidative stress-related indicators, apoptosis indicators (caspase-3), and blood-brain barrier (BBB) permeability (Claudin-5). Results: A total of 32 studies were included in the analysis. The results indicated that ligustrazine significantly improved the neurological function scores of ischemic stroke animals compared to the control group (SMD = -1.84, 95% CI -2.14 to -1.55, P < 0.00001). It also reduced the percentage of cerebral infarction (SMD = -2.97, 95% CI -3.58 to -2.36, P < 0.00001) and brain water content (SMD = -2.37, 95% CI -3.63 to -1.12, P = 0.0002). In addition, ligustrazine can significantly improve various inflammatory factors such as TNF-α (SMD = -7.53, 95% CI -11.34 to -3.72, P = 0.0001), IL-1ß (SMD = -2.65, 95% CI -3.87 to -1.44, P < 0.0001), and IL-6 (SMD = -5.55, 95% CI -9.32 to -1.78, P = 0.004). It also positively affects oxidative stress-related indicators including SOD (SMD = 4.60, 95% CI 2.10 to 7.10, P = 0.0003), NOS (SMD = -1.52, 95% CI -2.98 to -0.06, P = 0.04), MDA (SMD = -5.31, 95% CI -8.48 to -2.14, P = 0.001), and NO (SMD = -5.33, 95% CI -8.82 to -1.84, P = 0.003). Furthermore, it shows positive effects on the apoptosis indicator caspase-3 (SMD = -5.21, 95% CI -7.47 to -2.94, P < 0.00001) and the expression level of the sex-related protein Claudin-5, which influences BBB permeability (SMD = 7.38, 95% CI 3.95 to 10.82, P < 0.0001). Conclusion: Ligustrazine has been shown to have a protective effect in animal models of cerebral ischemic injury. Its mechanism of action is believed to be associated with the reduction of inflammation and oxidative stress, the inhibition of apoptosis, and the repair of BBB permeability. However, further high-quality animal experiments are required to validate these findings.

3.
Front Neurol ; 14: 1193834, 2023.
Article in English | MEDLINE | ID: mdl-37583954

ABSTRACT

In recent years, with the rapid development of molecular biology techniques such as polymerase chain reaction and molecular biochip, the etiological diagnosis of viral encephalitis has a very big step forward. At present, the etiological examination of viral meningitis mainly includes virus isolation, serological detection and molecular biological nucleic acid detection. This article reviews the progress in etiological diagnosis of viral meningitis.

SELECTION OF CITATIONS
SEARCH DETAIL