Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337284

ABSTRACT

Low-temperature mechanical chemical devulcanization is a process that can produce reclaimed rubber with exceptional mechanical properties. However, the inadequacy and low efficiency of the devulcanization have significantly restricted its application. To address the issues, alcoholic amines, including hydroxyethyl ethylenediamine (AEEA), ethanolamine (ETA), and diethanol amine (DEA), are utilized as devulcanizing agents to promote the devulcanization process. Careful characterizations are conducted to reveal the devulcanizing mechanism and to depict the performances of reclaimed rubbers. Results show that the amine groups in the devulcanizing agents can react with sulfur after the crosslink bonds are broken by mechanical shear force, thus blocking the activity of sulfur and introducing hydroxyl groups into the rubber chains. The incorporation of alcoholic amines can enhance the devulcanizing degree and devulcanizing efficiency, reduce the Mooney viscosity, and improve the mechanical and anti-aging performance. When using DEA as the devulcanizing agent, the sol content of reclaimed rubber increases from 13.1% to 22.4%, the devulcanization ratio increases from 82.1% to 89.0%, the Mooney viscosity decreases from 135.5 to 83.6, the tensile strength improves from 14.7 MPa to 16.3 MPa, the retention rate of tensile strength raises from 55.2% to 82.6% after aging for 72 h, while the devulcanization time is shortened from 21 min to 9.5 min, compared with that without using alcoholic amines. Therefore, alcoholic amines exhibit remarkable advantages in the devulcanization of waste rubber, thus indicating a promising direction for the advancement of research in the area of waste rubber reclamation.

2.
Polymers (Basel) ; 15(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771778

ABSTRACT

Carbon nanotube (CNT), as reinforcing agents in natural rubber (NR), has gained a large amount of consideration due to their excellent properties. Uniform dispersion of CNT is the key to obtaining high-performance NR nanocomposites. In this contribution, a novel ultrasonic grinding dispersion method of CNT with waterjet-produced rubber powder (WPRP) as a carrier is proposed. Microscopic morphologies show that a Xanthium-like structure with WPRP as the core and CNTs as the spikes is formed, which significantly improves the dispersion of CNT in the NR matrix and simultaneously strengthens the bonding of the WPRP and NR matrix. With the increase in the WPRP loading, the Payne effect of CNT/WPRP/NR composites decreases, indicating the effectiveness of the dispersion method. The vulcanization MH and ML value and crosslinking density increase with the increase in the WPRP loading, whereas the scorch time and cure time exhibit a decreasing trend when the WPRP loading is less than 15 phr. It is found that the CNT/WPRP/NR composites filled with 5 phr WPRP have a 4% increase in 300% modulus, a 3% increase in tensile strength, while a 5% decrease in Akron abrasion loss, compared to CNT/NR composites.

3.
Materials (Basel) ; 15(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079426

ABSTRACT

In the context of protecting the ecological environment and carbon neutrality, high-value recycling of flexible polyurethane foam (F-PUF) scraps, generated in the production process, is of great significance to save petroleum raw materials and reduce energy consumption. In the present study, F-PUF scraps were ground into powder by strong shear regrinding using two-roll mill and then reused as a partial replacement of polyol for re-foaming. A series of characterizations were employed to investigate the effect of milling cycles, roller temperatures, and content of the powder on the properties of the powder and F-PUF containing powder. It was revealed that the mechanochemical effect induced breaking of the cross-linking structure and increased activity of the powder. The volume mean diameter (VMD) of powder prepared with 7 milling cycles, at room temperature, is about 97.73 µm. The microstructure and density of the F-PUF containing powder prepared in the above-mentioned manner to replace up to 15 wt.% polyol, is similar to the original F-PUF, with resilience 49.08% and compression set 7.8%, which indicates that the recycling method will play an important role in industrial applications.

4.
Healthcare (Basel) ; 11(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36611581

ABSTRACT

In the digital media era, new media platforms have become the main channels for transmitting medical and health information in China. However, anti-intellectualism limits the effectiveness of disseminating health information. Therefore, in China, the government and health departments have made efforts to determine how to control anti-intellectualism to effectively disseminate medical and health information, given the situation of a global pandemic and its counter-measures. Against this backdrop, this study applied textual analysis to explore the manifestations of anti-intellectualism in network platforms. The key findings indicate that the irrational behavior of anti-intellectuals is manifested in emotional dominance, abusive behavior, overconfidence and trusting rumors. Based on these results, the authors propose some measures to balance the relationship between anti-intellectualism and health communication. The findings of the study have significant implications for improving the effectiveness of health communication in China.

SELECTION OF CITATIONS
SEARCH DETAIL