Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(17): 7991-8005, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37067249

ABSTRACT

Extracellular vesicles (EVs) show potential as a therapeutic tool for peripheral nerve injury (PNI), promoting neurological regeneration. However, there are limited data on the in vivo spatio-temporal trafficking and biodistribution of EVs. In this study, we introduce a new non-invasive near-infrared fluorescence imaging strategy based on glucose-conjugated quantum dot (QDs-Glu) labeling to target and track EVs in a sciatic nerve injury rat model in real-time. Our results demonstrate that the injected EVs migrated from the uninjured site to the injured site of the nerve, with an increase in fluorescence signals detected from 4 to 7 days post-injection, indicating the release of contents from the EVs with therapeutic effects. Immunofluorescence and behavioral tests revealed that the EV therapy promoted nerve regeneration and functional recovery at 28 days post-injection. We also found a relationship between functional recovery and the NIR-II fluorescence intensity change pattern, providing novel evidence for the therapeutic effects of EV therapy using real-time NIR-II imaging at the live animal level. This approach initiates a new path for monitoring EVs in treating PNI under in vivo NIR-II imaging, enhancing our understanding of the efficacy of EV therapy on peripheral nerve regeneration and its mechanisms.


Subject(s)
Extracellular Vesicles , Peripheral Nerve Injuries , Rats , Animals , Tissue Distribution , Extracellular Vesicles/metabolism , Peripheral Nerve Injuries/diagnostic imaging , Peripheral Nerve Injuries/therapy , Optical Imaging , Nerve Regeneration
2.
J Fish Biol ; 100(1): 242-252, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34739135

ABSTRACT

In recent days, many researchers are focusing on emerging a new class of bio-inspired architectured materials. The primary strategy of these architecture designs is directly dependent on the types of available literature based on higher-ordered species such as nacre and fish scales. In this study, the authors have investigated the microstructural features and mechanical properties of five different ray-finned fish scales from Lutjanidae family collected in Iran. It was found that habitat depth and habits may result in significant changes in scale's surface morphology and mechanical properties. Interestingly, the variations in cross-sectional microstructural features such as fibre orientation and layer thickness ratios in scales did not show noticeable differences. It has also been proved that the mechanical performance of fish scales is influenced by the shape, array pattern and compactness of strips on posterior edges in a scale. Moreover, the radii count at anterior positions is higher in fishes living in wide-ranging depth; it supports in achieving higher scale stiffness and flexibility during movement. Consideration of these factors may help in optimising the performance of newly designed architectured materials subjected to mechanical loadings.


Subject(s)
Ecosystem , Fishes , Animals , Cross-Sectional Studies , Iran
3.
Compos B Eng ; 1992020 Oct 15.
Article in English | MEDLINE | ID: mdl-33100886

ABSTRACT

The crack development is considered to be one of the most severe threats to the durability of concrete infrastructure. This study aims to enhance the durability performance of cementitious material with the pH-responsive Superabsorbent Polymer (SAP). The SAP was synthesized with acrylic acid (AA)-methyl acrylate (MA) precursors, and three type samples with different crosslinking levels were prepared. The examination on the pH sensitivity indicated that the swelling capacity of the prepared SAP would first increase and then decrease with solution alkalinity, and the peak swelling potential was achieved around pH value of 12 for all the three type SAP with solution/gel mass ratio of 500. Further examination indicated the alkalinity of the buffer solution was reduced during the adsorption test, which can be caused by the hydrolysis of the amide groups and the crosslinker. Besides that, it was also found the solution/gel ratio and the Ca(OH)2 content could affect the swelling potential of the SAP. After that, the performance tests were conducted for the evaluation of concrete with SAP. A wax-coating protocol for the SAP was designed by using the hot-water method to prevent its swelling during mixing process. It was found that the strength reduction for samples with wax-coated SAP was insignificant compared to that of the control samples. Furthermore, durability tests supported the wax-shell could be broken by the crack propagation in concrete. And further experimental studies are needed to optimize the wax-size and shell thickness for enhanced self-sealing efficiency.

4.
Materials (Basel) ; 13(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019114

ABSTRACT

Currently the investigation on recycled cement concrete aggregate has been widely conducted, while the understanding of the recycled polymer concrete aggregate is still limited. This study aims to fill this knowledge gap through the experimental investigation on mechanical and durability performance. Specifically, the remolded polyurethane stabilized Pisha sandstone was collected as the recycled polymer concrete aggregate. The remolded Pisha sandstone was then applied to re-prepare the polyurethane-based composites. After that, the mechanical performance of the prepared composites was first examined with unconfined and triaxial compressive tests. The results indicated that the Pisha sandstone reduces the composite's compressive strength. The reduction is caused by the remained polyurethane material on the surface of the remolded aggregate, which reduces its bond strength with the new polyurethane material. Aiming at this issue, this study applied the ethylene-vinyl acetate (EVA) to enhance the bond performance between the polyurethane and remolded sandstone. The test results indicated both the unconfined and triaxle compressive strength of the polyurethane composites were enhanced with the added EVA content. Furthermore, the durability performance of the EVA-modified composites were examined through freeze-thaw and wet-dry cycle tests. The test results indicated the EVA could enhance the polyurethane composites' resistance to both wet-dry and freeze-thaw cycles. Overall, the modification with EVA can compensate for the strength loss of polyurethane composites because of the applied remolded aggregate and enhance its sustainability.

SELECTION OF CITATIONS
SEARCH DETAIL
...