Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(21): 35016-35031, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859243

ABSTRACT

With the continuous development of modern optical systems, the demand for full spatial frequency errors of optical components in the system is increasing. Although computer-controlled sub-aperture polishing technology can quickly correct low-frequency errors, this technology significantly worsens the mid-frequency errors on the surface of the component, which greatly inhibits the improvement of optical system performance. Therefore, we conducted in-depth research on the non-stationary effect of the removal function caused by the fluctuation in magnetorheological polishing and their influence on the mid-frequency errors of the component surface. We established a non-stationary profile model of the removal function and applied this model to simulate the distribution of mid-frequency errors on the surface of the processed component, considering the non-stationary effect. The simulation results showed that the non-stationary effect of the removal function weaken the mid-frequency ripple errors but increase other mid-frequency errors. Therefore, we first proposed the optimal single-material removal thickness corresponding to the non-stationary effect and experimentally verified the effectiveness of the optimal material removal thickness in suppressing mid-frequency errors. The experimental results showed that when the magnetorheological finishing single-material removal thickness is set to the optimal value, both the mid-frequency ripple errors and the mid-frequency RMS on the surface significantly decrease. Therefore, this work provides a basis for improving the existing magnetorheological finishing process and effectively suppressing the mid-frequency errors on the surface of processed components. It also provides theoretical and technical support for the magnetorheological processing and manufacturing of high-precision optical components. At the same time, the non-stationary effect and the corresponding analytical models has the potential to be extended to other polishing tools.

2.
Appl Opt ; 62(3): 805-812, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36821287

ABSTRACT

In view of the problems of large surface roughness and low removal efficiency caused by the existing sapphire processing process, a combined polishing process based on temperature control computer controlled optical surfacing-magnetic rheology is proposed. The polishing removal mechanism of sapphire material polishing and the law of processing surface roughness change are studied. The optimal process parameters are obtained by designing the orthogonal experiments. Under this parameter, a sapphire aspherical component with good surface quality is obtained, and the temperature has a significant amount of influence on the removal efficiency. Finally, the optimum temperature of sapphire material under magnetorheological polishing was determined to be 75°C. The results greatly improve the manufacturing efficiency of high sapphire surface quality.

3.
Materials (Basel) ; 17(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38204011

ABSTRACT

Single-crystal silicon carbide has excellent electrical, mechanical, and chemical properties. However, due to its high hardness material properties, achieving high-precision manufacturing of single-crystal silicon carbide with an ultra-smooth surface is difficult. In this work, quantum dots were introduced as a sacrificial layer in polishing for pulsed-ion-beam sputtering of single-crystal SiC. The surface of single-crystal silicon carbide with a quantum-dot sacrificial layer was sputtered using a pulsed-ion beam and compared with the surface of single-crystal silicon carbide sputtered directly. The surface roughness evolution of single-crystal silicon carbide etched using a pulsed ion beam was studied, and the mechanism of sacrificial layer sputtering was analyzed theoretically. The results show that direct sputtering of single-crystal silicon carbide will deteriorate the surface quality. On the contrary, the surface roughness of single-crystal silicon carbide with a quantum-dot sacrificial layer added using pulsed-ion-beam sputtering was effectively suppressed, the surface shape accuracy of the Ø120 mm sample was converged to 7.63 nm RMS, and the roughness was reduced to 0.21 nm RMS. Therefore, the single-crystal silicon carbide with the quantum-dot sacrificial layer added via pulsed-ion-beam sputtering can effectively reduce the micro-morphology roughness phenomenon caused by ion-beam sputtering, and it is expected to realize the manufacture of a high-precision ultra-smooth surface of single-crystal silicon carbide.

4.
Materials (Basel) ; 15(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955209

ABSTRACT

As a key component of a high-power laser device, fused silica optics needs to bear great laser energy, and laser damage is easily generated on the optical surface. In order to improve the service life and availability of optics, it is necessary to repair the damaged optics. In this work, the repair technique of damaged, fused silica optics was studied. The neural network method was mainly used to establish the correlation between the number of small-scale damage points and the repair depth. The prediction accuracy of the model is better than 90%. Based on the neural network model, the removal depth parameters were optimized with the suppression coefficient of the damage points. The processing effect of the optimized parameters was verified by magnetorheological polishing experiments. In this paper, a repair technique based on a neural network was proposed, which avoids the low efficiency caused by processing iterations in the repair process, and can accurately what was expected. The method proposed in this work has an important reference value in the repair process of fused silica optics.

5.
Micromachines (Basel) ; 13(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893157

ABSTRACT

The continuous phase plate (CPP) provides excellent beam smoothing and shaping impacts in the inertial confinement fusion application. However, due to the features of its dispersion, its surface gradient is frequently too large (>2 µm/cm) to process. When machining a large gradient surface with continuous ion beam figuring (IBF), the acceleration of the machine motion axis cannot fulfill the appropriate requirements, and the machining efficiency is further influenced by the unavoidable extra removal layer. The pulsed ion beam (PIB) discretizes the ion beam by incorporating frequency-domain parameters, resulting in a pulsed beam with a controlled pulse width and frequency and avoiding the extra removal layer. This research evaluates the processing convergence ability of IBF and PIB for the large gradient surface using simulation and experiment. The findings reveal that PIB offers obvious advantages under the same beam diameter. Compared with the convergence ratio (γ = 2.02) and residuals (RMS = 184.36 nm) of IBF, the residuals (RMS = 27.48 nm) of PIB are smaller, and the convergence ratio (γ = 8.47) is higher. This work demonstrates that PIB has better residual convergence in large gradient surface processing. It is expected to realize ion beam machining with a higher convergence ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...