Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(8): 104965, 2023 08.
Article in English | MEDLINE | ID: mdl-37356718

ABSTRACT

Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.


Subject(s)
Cytokines , Lipoylation , Neurons , Signal Transduction , Animals , Female , Humans , Mice , Pregnancy , Cytokines/metabolism , Ganglia, Spinal/metabolism , HEK293 Cells , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Neurons/cytology , Neurons/metabolism , Proteomics , Cell Survival
2.
Cardiovasc Res ; 118(5): 1276-1288, 2022 03 25.
Article in English | MEDLINE | ID: mdl-33892492

ABSTRACT

AIMS: Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodelling. METHODS AND RESULTS: A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, haemodynamic, and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodelling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the ß-adrenergic receptor agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2A regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS: Altogether, our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression.


Subject(s)
ErbB Receptors , Myocardial Contraction , Myocytes, Cardiac , Animals , Dependovirus , ErbB Receptors/genetics , ErbB Receptors/metabolism , Isoproterenol/pharmacology , Mice , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Troponin T/genetics
3.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34320366

ABSTRACT

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Ventricular Remodeling/physiology , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Myocardium/metabolism , Troponin T/genetics
4.
Cell Signal ; 78: 109846, 2021 02.
Article in English | MEDLINE | ID: mdl-33238186

ABSTRACT

ß1-adrenergic receptor (ß1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with ß1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with ß1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with ß1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent ß1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted ß1AR-EGFR association over time and prevented ß1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with ß1AR, and its disruption prevents ß1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting ß1AR-EGFR downstream signaling.


Subject(s)
Receptors, Adrenergic, beta-1/metabolism , Signal Transduction , Cell Line, Tumor , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Peptides/chemistry , Peptides/genetics , Peptides/pharmacology , Protein Domains , Receptors, Adrenergic, beta-1/chemistry , Receptors, Adrenergic, beta-1/genetics
5.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32673071

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Subject(s)
Biomarkers/chemistry , Idiopathic Pulmonary Fibrosis/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Macrophages/physiology , Monocytes/physiology , Receptors, CCR2/chemistry , Adult , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Molecular Imaging , Positron-Emission Tomography
6.
Cell Signal ; 38: 127-133, 2017 10.
Article in English | MEDLINE | ID: mdl-28711716

ABSTRACT

ß-adrenergic receptors (ßAR) regulate numerous functions throughout the body, however G protein-coupled receptor kinase (GRK)-dependent desensitization of ßAR has long been recognized as a maladaptive process in the progression of various disease states. Thus, the development of small molecule inhibitors of GRKs for the study of these processes and as potential therapeutics has been at the forefront of recent research efforts. Via structural and biochemical analyses, the selective serotonin reuptake inhibitor (SSRI) paroxetine was identified as a GRK2 inhibitor that enhances ßAR-dependent cardiomyocyte and cardiac contractility and reverses cardiac dysfunction and myocardial ßAR expression in mouse models of heart failure. Despite these functional outcomes, consistent with diminished ßAR desensitization, the proximal ßAR signaling mechanisms sensitive to paroxetine have not been reported. In this study, we aimed to determine whether paroxetine prevents classic ßAR desensitization-related signaling mechanisms at a molecular level. Therefore, via immunoblotting, radioligand binding, fluorescence resonance energy transfer (FRET) and microscopy assays, we have performed an assessment of the effect of paroxetine on proximal ßAR signaling responses. Indeed, paroxetine treatment inhibited ligand-induced ß2AR phosphorylation in a concentration-dependent manner. Additionally, for both ß1AR and ß2AR, paroxetine decreased ligand-induced ßarrestin2 recruitment and subsequent receptor internalization. Thus, paroxetine inhibits ßAR desensitization mechanisms consistent with GRK2 inhibition and provides a useful pharmacological tool for studying these proximal GPCR signaling responses.


Subject(s)
Paroxetine/pharmacology , Receptors, Adrenergic, beta/metabolism , Signal Transduction , Adrenergic beta-Agonists/pharmacology , Cell Line , Endocytosis/drug effects , Humans , Phosphorylation/drug effects , Signal Transduction/drug effects , beta-Arrestin 2/metabolism
7.
J Cardiovasc Pharmacol ; 70(1): 3-9, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28059858

ABSTRACT

G protein-coupled receptors (GPCRs) remain primary therapeutic targets for numerous cardiovascular disorders, including heart failure (HF), because of their influence on cardiac remodeling in response to elevated neurohormone signaling. GPCR blockers have proven to be beneficial in the treatment of HF by reducing chronic G protein activation and cardiac remodeling, thereby extending the lifespan of patients with HF. Unfortunately, this effect does not persist indefinitely, thus next-generation therapeutics aim to selectively block harmful GPCR-mediated pathways while simultaneously promoting beneficial signaling. Transactivation of epidermal growth factor receptor (EGFR) has been shown to be mediated by an expanding repertoire of GPCRs in the heart, and promotes cardiomyocyte survival, thus may offer a new avenue of HF therapeutics. However, GPCR-dependent EGFR transactivation has also been shown to regulate cardiac hypertrophy and fibrosis by different GPCRs and through distinct molecular mechanisms. Here, we discuss the mechanisms and impact of GPCR-mediated EGFR transactivation in the heart, focusing on angiotensin II, urotensin II, and ß-adrenergic receptor systems, and highlight areas of research that will help us to determine whether this pathway can be engaged as future therapeutic strategy.


Subject(s)
ErbB Receptors/genetics , ErbB Receptors/metabolism , Myocytes, Cardiac/physiology , Receptors, G-Protein-Coupled/physiology , Transcriptional Activation/physiology , Animals , Humans
8.
Sci Signal ; 8(366): ra23, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25737585

ABSTRACT

Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.


Subject(s)
Avian Proteins/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Mitochondrial Proteins/metabolism , Animals , Avian Proteins/genetics , Calcium Channels/genetics , Cell Line , Chickens , Cyclic AMP Response Element-Binding Protein/genetics , Endoplasmic Reticulum , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , ORAI1 Protein , Stromal Interaction Molecule 1
9.
EMBO Mol Med ; 7(1): 42-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25504525

ABSTRACT

Cutaneous atrophy is the major adverse effect of topical glucocorticoids; however, its molecular mechanisms are poorly understood. Here, we identify stress-inducible mTOR inhibitor REDD1 (regulated in development and DNA damage response 1) as a major molecular target of glucocorticoids, which mediates cutaneous atrophy. In REDD1 knockout (KO) mice, all skin compartments (epidermis, dermis, subcutaneous fat), epidermal stem, and progenitor cells were protected from atrophic effects of glucocorticoids. Moreover, REDD1 knockdown resulted in similar consequences in organotypic raft cultures of primary human keratinocytes. Expression profiling revealed that gene activation by glucocorticoids was strongly altered in REDD1 KO epidermis. In contrast, the down-regulation of genes involved in anti-inflammatory glucocorticoid response was strikingly similar in wild-type and REDD1 KO mice. Integrative bioinformatics analysis of our and published gene array data revealed similar changes of gene expression in epidermis and in muscle undergoing glucocorticoid-dependent and glucocorticoid-independent atrophy. Importantly, the lack of REDD1 did not diminish the anti-inflammatory effects of glucocorticoids in preclinical model. Our findings suggest that combining steroids with REDD1 inhibitors may yield a novel, safer glucocorticoid-based therapies.


Subject(s)
Atrophy/metabolism , Glucocorticoids/adverse effects , Skin Diseases/drug therapy , Skin Diseases/metabolism , Transcription Factors/metabolism , Adult , Aged , Animals , Atrophy/etiology , Atrophy/genetics , Atrophy/pathology , Female , Glucocorticoids/metabolism , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Middle Aged , Skin Diseases/genetics , Skin Diseases/pathology , Transcription Factors/genetics
10.
Mol Biol Cell ; 25(6): 936-47, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24430870

ABSTRACT

Emerging findings suggest that two lineages of mitochondrial Ca(2+) uptake participate during active and resting states: 1) the major eukaryotic membrane potential-dependent mitochondrial Ca(2+) uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca(2+) across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca(2+) accumulation are unclear. Solute carriers--solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25--represent a family of EF-hand-containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference-mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca(2+) uptake and reduces cytosolic Ca(2+) clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand-domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca(2+) uptake. In addition, SLC25A23 interacts with mitochondrial Ca(2+) uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA-insensitive SLC25A23 cDNA restores mitochondrial Ca(2+) uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca(2+) influx.


Subject(s)
Antiporters/genetics , Calcium Channels/genetics , Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Adenosine Triphosphate/metabolism , Amino Acid Transport Systems, Acidic/antagonists & inhibitors , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Antiporters/antagonists & inhibitors , Antiporters/metabolism , Calcium Channels/metabolism , Calcium Signaling , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Death , Clone Cells , Gene Expression Regulation , HeLa Cells , Histamine/pharmacology , Humans , Ion Transport/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Oxidative Stress , Oxygen Consumption/drug effects , Protein Structure, Tertiary , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...