Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insights Imaging ; 15(1): 101, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578423

ABSTRACT

BACKGROUND: We aimed to explore the application value of various machine learning (ML) algorithms based on multicenter CT radiomics in identifying peripheral nerve invasion (PNI) of colorectal cancer (CRC). METHODS: A total of 268 patients with colorectal cancer who underwent CT examination in two hospitals from January 2016 to December 2022 were considered. Imaging and clinicopathological data were collected through the Picture Archiving and Communication System (PACS). The Feature Explorer software (FAE) was used to identify the peripheral nerve invasion of colorectal patients in center 1, and the best feature selection and classification channels were selected. Finally, the best feature selection and classifier pipeline were verified in center 2. RESULTS: The six-feature models using RFE feature selection and GP classifier had the highest AUC values, which were 0.610, 0.699, and 0.640, respectively. FAE generated a more concise model based on one feature (wavelet-HLL-glszm-LargeAreaHighGrayLevelEmphasis) and achieved AUC values of 0.614 and 0.663 on the validation and test sets, respectively, using the "one standard error" rule. Using ANOVA feature selection, the GP classifier had the best AUC value in a one-feature model, with AUC values of 0.611, 0.663, and 0.643 on the validation, internal test, and external test sets, respectively. Similarly, when using the "one standard error" rule, the model based on one feature (wave-let-HLL-glszm-LargeAreaHighGrayLevelEmphasis) achieved AUC values of 0.614 and 0.663 on the validation and test sets, respectively. CONCLUSIONS: Combining artificial intelligence and radiomics features is a promising approach for identifying peripheral nerve invasion in colorectal cancer. This innovative technique holds significant potential for clinical medicine, offering broader application prospects in the field. CRITICAL RELEVANCE STATEMENT: The multi-channel ML method based on CT radiomics has a simple operation process and can be used to assist in the clinical screening of patients with CRC accompanied by PNI. KEY POINTS: • Multi-channel ML in the identification of peripheral nerve invasion in CRC. • Multi-channel ML method based on CT-radiomics can detect the PNI of CRC. • Early preoperative identification of PNI in CRC is helpful to improve the formulation of treatment strategies and the prognosis of patients.

2.
Hum Brain Mapp ; 45(5): e26656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38530116

ABSTRACT

Gray matter (GM) atrophy and white matter (WM) lesions may contribute to cognitive decline in patients with delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning. However, there is currently a lack of evidence supporting this relationship. This study aimed to investigate the volume of GM, cortical thickness, and burden of WM lesions in 33 DNS patients with dementia, 24 DNS patients with mild cognitive impairment, and 51 healthy controls. Various methods, including voxel-based, deformation-based, surface-based, and atlas-based analyses, were used to examine GM structures. Furthermore, we explored the connection between GM volume changes, WM lesions burden, and cognitive decline. Compared to the healthy controls, both patient groups exhibited widespread GM atrophy in the cerebral cortices (for volume and cortical thickness), subcortical nuclei (for volume), and cerebellum (for volume) (p < .05 corrected for false discovery rate [FDR]). The total volume of GM atrophy in 31 subregions, which included the default mode network (DMN), visual network (VN), and cerebellar network (CN) (p < .05, FDR-corrected), independently contributed to the severity of cognitive impairment (p < .05). Additionally, WM lesions impacted cognitive decline through both direct and indirect effects, with the latter mediated by volume reduction in 16 subregions of cognitive networks (p < .05). These preliminary findings suggested that both GM atrophy and WM lesions were involved in cognitive decline in DNS patients following CO poisoning. Moreover, the reduction in the volume of DMN, VN, and posterior CN nodes mediated the WM lesions-induced cognitive decline.


Subject(s)
Carbon Monoxide Poisoning , Cognitive Dysfunction , White Matter , Humans , Carbon Monoxide Poisoning/complications , Carbon Monoxide Poisoning/diagnostic imaging , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Atrophy , Disease Progression
3.
Sci Rep ; 14(1): 5020, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424285

ABSTRACT

The aim to investigate the predictive efficacy of automatic breast volume scanner (ABVS), clinical and serological features alone or in combination at model level for predicting HER2 status. The model weighted combination method was developed to identify HER2 status compared with single data source model method and feature combination method. 271 patients with invasive breast cancer were included in the retrospective study, of which 174 patients in our center were randomized into the training and validation sets, and 97 patients in the external center were as the test set. Radiomics features extracted from the ABVS-based tumor, peritumoral 3 mm region, and peritumoral 5 mm region and clinical features were used to construct the four types of the optimal single data source models, Tumor, R3mm, R5mm, and Clinical model, respectively. Then, the model weighted combination and feature combination methods were performed to optimize the combination models. The proposed weighted combination models in predicting HER2 status achieved better performance both in validation set and test set. For the validation set, the single data source model, the feature combination model, and the weighted combination model achieved the highest area under the curve (AUC) of 0.803 (95% confidence interval [CI] 0.660-947), 0.739 (CI 0.556,0.921), and 0.826 (95% CI 0.689,0.962), respectively; with the sensitivity and specificity were 100%, 62.5%; 81.8%, 66.7%; 90.9%,75.0%; respectively. For the test set, the single data source model, the feature combination model, and the weighted combination model attained the best AUC of 0.695 (95% CI 0.583, 0.807), 0.668 (95% CI 0.555,0.782), and 0.700 (95% CI 0.590,0.811), respectively; with the sensitivity and specificity were 86.1%, 41.9%; 61.1%, 71.0%; 86.1%, 41.9%; respectively. The model weighted combination was a better method to construct a combination model. The optimized weighted combination models composed of ABVS-based intratumoral and peritumoral radiomics features and clinical features may be potential biomarkers for the noninvasive and preoperative prediction of HER2 status in breast cancer.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/diagnostic imaging , Radiomics , Retrospective Studies , Breast
4.
Acta Radiol ; 65(5): 414-421, 2024 May.
Article in English | MEDLINE | ID: mdl-38342993

ABSTRACT

BACKGROUND: Current liver magnetic resonance elastography (MRE) scans often require adjustments to driver amplitude to produce acceptable images. This could lead to time wastage and the potential loss of an opportunity to capture a high-quality image. PURPOSE: To construct a linear regression model of individualized driver amplitude to improve liver MRE image quality. MATERIAL AND METHODS: Data from 95 liver MRE scans of 61 participants, including abdominal missing volume ratio (AMVR), breath-holding status, the distance from the passive driver on the skin surface to the liver edge (Dd-l), body mass index (BMI), and lateral deflection of the passive driver with respect to the human sagittal plane (Angle α), were continuously collected. The Spearman correlation analysis and lasso regression were conducted to screen the independent variables. Multiple linear regression equations were developed to determine the optimal amplitude prediction model. RESULTS: The optimal formula for linear regression models: driver amplitude (%) = -16.80 + 78.59 × AMVR - 11.12 × breath-holding (end of expiration = 1, end of inspiration = 0) + 3.16 × Dd-l + 1.94 × BMI + 0.34 × angle α, with the model passing the F test (F = 22.455, P <0.001) and R2 value of 0.558. CONCLUSION: The individualized amplitude prediction model based on AMVR, breath-holding status, Dd-l, BMI, and angle α is a valuable tool in liver MRE examination.


Subject(s)
Elasticity Imaging Techniques , Liver , Magnetic Resonance Imaging , Humans , Elasticity Imaging Techniques/methods , Male , Female , Linear Models , Liver/diagnostic imaging , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Aged , Breath Holding , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL