Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.192
Filter
1.
J Parkinsons Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728202

ABSTRACT

Background: Previous studies have demonstrated the importance of the locus coeruleus (LC) in sleep-wake regulation. Both essential tremor (ET) and Parkinson's disease (PD) share common sleep disorders, such as poor quality of sleep (QoS). LC pathology is a feature of both diseases. A question arises regarding the contribution of LC degeneration to the occurrence of poor QoS. Objective: To evaluate the association between LC impairment and sleep disorders in ET and PD patients. Methods: A total of 83 patients with ET, 124 with PD, and 83 healthy individuals were recruited and divided into ET/PD with/without poor QoS (Sle/NorET and Sle/NorPD) subgroups according to individual Pittsburgh Sleep Quality Index (PSQI) score. Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and free-water imaging derived from diffusion MRI were performed. Subsequently, we evaluated the association between contrast-to-noise ratio of LC (CNRLC) and free-water value of LC (FWLC) with PSQI scores in ET and PD groups. Results: CNRLC was significantly lower in ET (p = 0.047) and PD (p = 0.018) than in healthy individuals, whereas no significant difference was found in FWLC among the groups. No significant differences were observed in CNR/FWLC between patients with/without sleep disorders after multiple comparison correction. No correlation was identified between CNR/FWLC and PSQI in ET and PD patients. Conclusions: LC degeneration was observed in both ET and PD patients, implicating its involvement in the pathophysiology of both diseases. Additionally, no significant association was observed between LC integrity and PSQI, suggesting that LC impairment might not directly relate to overall QoS.

3.
Asian J Androl ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38727211

ABSTRACT

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

5.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702793

ABSTRACT

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Wharton Jelly/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Cell Proliferation , Cell Separation/methods , Cell Separation/standards
7.
iScience ; 27(5): 109693, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38689642

ABSTRACT

The USP7 deubiquitinase regulates proteins involved in the cell cycle, DNA repair, and epigenetics and has been implicated in cancer progression. USP7 inhibition has been pursued for the development of anti-cancer therapies. Here, we describe the discovery of potent and specific USP7 inhibitors exemplified by FX1-5303. FX1-5303 was used as a chemical probe to study the USP7-mediated regulation of p53 signaling in cells. It demonstrates mechanistic differences compared to MDM2 antagonists, a related class of anti-tumor agents that act along the same pathway. FX1-5303 synergizes with the clinically approved BCL2 inhibitor venetoclax in acute myeloid leukemia (AML) cell lines and ex vivo patient samples and leads to strong tumor growth inhibition in in vivo mouse xenograft models of multiple myeloma and AML. This work introduces new USP7 inhibitors, differentiates their mechanism of action from MDM2 inhibition, and identifies specific opportunities for their use in the treatment of AML.

8.
Chem Biodivers ; : e202400524, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634793

ABSTRACT

Baihe is a commonly used Chinese medicine for the treatment of neurological disorders. Clinically, the bulbs of Lilium brownii are used to act as Baihe. In the study, two new phenylpropanoid compounds including 3-O-acetyl-1-O-caffeoylglycerol (1) and 3-O-acetyl-1-O-p-coumaroylglycerol (2) were isolated from the bulbs of L. brownii. Their structures were identified by spectroscopic method and the effect on monoamine oxidase activity was determined using an enzyme labeling method. The results show 1 and 2 have anti-monoamine oxidase activity with 20.96% and 22.31% inhibition rates at 50 µg/ml, respectively.

9.
Biomimetics (Basel) ; 9(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38667223

ABSTRACT

With the rise and development of autonomy and intelligence technologies, UAVs will have increasingly significant applications in the future. It is very important to solve the problem of low-altitude penetration of UAVs to protect national territorial security. Based on an S-57 electronic chart file, the land, island, and threat information for an actual combat environment is parsed, extracted, and rasterized to construct a marine combat environment for UAV flight simulation. To address the problem of path planning for low-altitude penetration in complex environments, a photosensitivity-enhanced plant growth algorithm (PEPG) is proposed. Based on the plant growth path planning algorithm (PGPP), the proposed algorithm improves upon the light intensity preprocessing and light intensity calculation methods. Moreover, the kinematic constraints of the UAV, such as the turning angle, are also considered. The planned path that meets the safety flight requirements of the UAV is smoother than that of the original algorithm, and the length is reduced by at least 8.2%. Finally, simulation tests are carried out with three common path planning algorithms, namely, A*, RRT, and GA. The results show that the PEPG algorithm is superior to the other three algorithms in terms of the path length and path quality, and the feasibility and safety of the path are verified via the autonomous tracking flight of a UAV.

10.
Int J Biol Macromol ; 267(Pt 2): 131543, 2024 May.
Article in English | MEDLINE | ID: mdl-38614169

ABSTRACT

A temperature/pH dual sensitive hydrogel with a semi-interpenetrating network (semi-IPN) structure was synthesized through an aqueous amino-succinimide reaction between water-soluble polysuccinimide and polyethyleneimine in the presence of thermosensitive cellulose derivatives. Single-factor experiments were carried out to optimize the preparation conditions of the semi-IPN hydrogel. The swelling behavior and cytotoxicity assay of the hydrogel were tested. Finally, taking 5- fluorouracil (5-Fu) as a model drug, the release performance of the 5-Fu-loaded hydrogel was investigated. The results indicated that the swelling ratio (SR) first decreased and then increased when the pH of the solutions ascended from 2 to 10. The SR decreased with the increase in temperature. In addition, the swelling behavior of the hydrogel was reversible and reproducible under different pH values and temperatures. The prepared hydrogels had good cytocompatibility. The release behavior of 5-Fu was most consistent with the Korsmeyer-Peppas model and followed the case II diffusion. The acidic environment was beneficial for the release of 5-Fu. The preparation process of the semi-IPN hydrogel is simple and the reaction can proceed quickly in water. The strategy introduced here has great potential for application in the preparation of drug carriers.


Subject(s)
Cellulose , Fluorouracil , Hydrogels , Succinimides , Temperature , Hydrogels/chemistry , Hydrogels/chemical synthesis , Cellulose/chemistry , Cellulose/analogs & derivatives , Hydrogen-Ion Concentration , Fluorouracil/chemistry , Fluorouracil/pharmacology , Succinimides/chemistry , Water/chemistry , Drug Liberation , Drug Carriers/chemistry , Humans
11.
Langmuir ; 40(19): 10217-10227, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38688028

ABSTRACT

The temperature dependence of the dynamic contact angles (DCAs) of water on a metallic surface remains unclear, especially under elevated pressures. Here in this work, the advancing and receding contact angles (RCAs), as well as the contact angle hysteresis (CAH), of water on stainless-steel 316 (SS316) surfaces were studied using the dynamic sessile drop method for temperatures up to 300 °C and pressures up to 10 MPa. It was found that the temperature dependence of the DCAs exhibits a different pattern as compared to the piecewise linear decline of static contact angles. The advancing contact angle (ACA) remains nearly constant and does not decrease until the temperature becomes close to the saturated temperature. The decrease in ACA is attributed to evaporation, which reduces the advancement of energy barrier. The RCA linearly declines below 120 °C and remains stable above 120 °C. The increasing temperature enhances the pinning effect and changes the droplet receding mode. Under all pressures tested, the CAH demonstrates a "increase-constant-decrease" trilinear relationship with temperature. Furthermore, the mean solid surface entropy and solid-gas interfacial tension of SS316 were estimated to be 0.1152 mJ/(m2·°C) and 61.49 mJ/m2, respectively.

12.
J Environ Sci (China) ; 143: 201-212, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644017

ABSTRACT

Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.


Subject(s)
Benzene , Cobalt , Oxidation-Reduction , Oxides , Silver , Benzene/chemistry , Cobalt/chemistry , Silver/chemistry , Catalysis , Oxides/chemistry , Models, Chemical , Air Pollutants/chemistry
13.
Nat Commun ; 15(1): 2953, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580662

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.


Subject(s)
Heart Failure , Hydroxymethylglutaryl-CoA Reductase Inhibitors , MicroRNAs , Animals , Male , Mice , Endothelial Cells/metabolism , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , MicroRNAs/metabolism , RNA, Circular/genetics , Stroke Volume/physiology
15.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557887

ABSTRACT

Ensuring the safe operation of trains hinges on precise bearing condition monitoring, given the pivotal role bearings play in railway wagons. The status and maintenance of wagon bearings are of paramount concern, necessitating a shift from traditional maintenance approaches reliant on schedules and experience, which often lack real-time precision and efficiency. To address this challenge, our research focuses on enhancing the sparrow search algorithm by incorporating logistic chaos mapping and the levy flight strategy. This enhanced algorithm optimizes variational mode decomposition parameters, utilizing intrinsic mode components' average dispersion entropy as the fitness function. This optimization is integrated with a multi-level convolutional neural network for bearing fault diagnosis. Our findings demonstrate the improved algorithm's enhanced spatial search capabilities and reduced modal aliasing in the frequency components. Experimental validation on public datasets and the group's experimental platform for railway wagons shows that multi-level convolutional neural networks have higher diagnostic accuracy and faster convergence speeds than traditional models such as LeNet-5, AlexNet, and convolutional neural network. Our research introduces a highly accurate and widely applicable methodology for mechanical equipment fault diagnosis, aligning with the requirements of the "smart" era.

16.
Front Pharmacol ; 15: 1372077, 2024.
Article in English | MEDLINE | ID: mdl-38584601

ABSTRACT

Background: Poly (ADP-ribose) polymerase (PARP) inhibitor and antiangiogenic agent monotherapy have shown to be effective as maintenance treatment in patients with ovarian cancer (OC). However, there is currently a lack of evidence-based study to directly compare the effects of combination therapy with these two drugs. Therefore, this study aimed to compare the efficacy and safety of combination therapy with PARP inhibitors and antiangiogenic agents in women with OC using a meta-analysis. Methods: An exhaustive search of literature was undertaken using multiple databases, including PubMed, Web of Science, Embase, and the Cochrane Library to identify pertinent randomized controlled trials (RCTs) published up until 17 December 2023. The data on progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were pooled. We computed the pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) for PFS and OS, along with the relative risks (RRs) and 95% CIs for AEs. Trial sequential analysis, heterogeneity test, sensitivity analysis, and publication bias assessment were performed. Stata 12.0 and Software R 4.3.1 were utilized for all analyses. Results: This meta-analysis included 7 RCTs with a total of 3,388 participants. The overall analysis revealed that combination therapy of PARP inhibitors and antiangiogenic agents significantly improved PFS (HR = 0.615, 95% CI = 0.517-0.731; 95% PI = 0.379-0.999), but also increased the risk of AEs, including urinary tract infection (RR = 1.500, 95% CI = 1.114-2.021; 95% PI = 0.218-10.346), fatigue (RR = 1.264, 95% CI = 1.141-1.400; 95% PI = 1.012-1.552), headache (RR = 1.868, 95% CI = 1.036-3.369; 95% PI = 0.154-22.642), anorexia (RR = 1.718, 95% CI = 1.320-2.235; 95% PI = 0.050-65.480), and hypertension (RR = 5.009, 95% CI = 1.103-22.744; 95% PI = 0.016-1580.021) compared with PARP inhibitor or antiangiogenic agent monotherapy. Our study has not yet confirmed the benefit of combination therapy on OS in OC patients (HR = 0.885, 95% CI = 0.737-1.063). Additionally, subgroup analyses further showed that combination therapy resulted in an increased risk of AEs, encompassing thrombocytopenia, vomiting, abdominal pain, proteinuria, fatigue, headache, anorexia, and hypertension (all p < 0.05). Conclusion: Our study demonstrated the PFS benefit of combination therapy with PARP inhibitors and antiangiogenic agents in patients with OC. The OS result need to be updated after the original trial data is mature. Clinicians should be vigilant of AEs when administering the combination therapy in clinical practice. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023494482.

18.
J Mol Histol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609527

ABSTRACT

Neural stem cell secretome (NSC-S) plays an important role in neuroprotection and recovery. Studies have shown that endoplasmic reticulum stress (ER stress) is involved in the progression of traumatic brain injury (TBI) and is a crucial cause of secondary damage and neuronal death after brain injury. Whether NSC-S is engaged in ER stress and ER stress-mediated neuronal apoptosis post-TBI has not been investigated. In the study, the Feeney SD male rat model was established. The results showed that NSC-S treatment significantly improved the behavior of rats with TBI. In addition, NSC-S relieved ER stress in TBI rats and was observed by transmission electron microscopy and western blot. The specific mechanism was further elucidated that restoration was achieved by alleviating the PERK-eIF2α pathway and thus protecting neurons from apoptosis. Notably, the discovery of calumenin (CALU) in NSC-S by liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS) may be related to the protective effect of NSC-S on ER stress in neurons. Also, the mechanism by which it functions may be related to ubiquitination. In summary, NSC-S improved prognosis and ER stress in TBI rats and might be a promising treatment for relieving TBI.

19.
Rice (N Y) ; 17(1): 24, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587574

ABSTRACT

The quality of rice (Oryza sativa L) is determined by a combination of appearance, flavor, aroma, texture, storage characteristics, and nutritional composition. Rice quality directly influences acceptance by consumers and commercial value. The genetic mechanism underlying rice quality is highly complex, and is influenced by genotype, environment, and chemical factors such as starch type, protein content, and amino acid composition. Minor variations in these chemical components may lead to substantial differences in rice quality. Among these components, starch is the most crucial and influential factor in determining rice quality. In this study, quantitative trait loci (QTLs) associated with eight physicochemical properties related to the rapid viscosity analysis (RVA) profile were identified using a high-density sequence map constructed using recombinant inbred lines (RILs). Fifty-nine QTLs were identified across three environments, among which qGT6.4 was a novel locus co-located across all three environments. By integrating RNA-seq data, we identified the differentially expressed candidate gene OsCRLK2 within the qGT6.4 interval. osclrk2 mutants exhibited decreased gelatinization temperature (GT), apparent amylose content (AAC) and viscosity, and increased chalkiness. Furthermore, osclrk2 mutants exhibited downregulated expression of the majority of starch biosynthesis-related genes compared to wild type (WT) plants. In summary, OsCRLK2, which encodes a receptor-like protein kinase, appears to consistently influence rice quality across different environments. This discovery provides a new genetic resource for use in the molecular breeding of rice cultivars with improved quality.

20.
Materials (Basel) ; 17(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38591402

ABSTRACT

GeTe and Ge0.99-xIn0.01SnxTe0.94Se0.06 (x = 0, 0.01, 0.03, and 0.06) samples were prepared by vacuum synthesis combined with spark plasma sintering (SPS). The thermoelectric properties of GeTe were coordinated by multiple doping of Sn, In, and Se. In this work, a maximum zT(zT = S2σT/κ) of 0.9 and a power factor (PF = S2σ) of 3.87 µWmm-1 K-2 were obtained in a sample of Ge0.99In0.01Te0.94Se0.06 at 723K. The XRD results at room temperature show that all samples are rhombohedral phase structures. There is a peak (~27°) of the Ge element in GeTe and the sample (x = 0), but it disappears after Sn doping, indicating that Sn doping can promote the dissolution of Ge. The scattering mechanism of the doped samples was calculated by the conductivity ratio method. The results show that phonon scattering Is dominant in all samples, and alloy scattering is enhanced with the increase in the Sn doping amount. In doping can introduce resonance energy levels and increase the Seebeck coefficient, and Se doping can introduce point defects to suppress phonon transmission and reduce lattice thermal conductivity. Therefore, the thermoelectric properties of samples with x = 0 improved. Although Sn doping will promote the dissolution of Ge precipitation, the phase transition of the samples near 580 K deteriorates the thermoelectric properties. The thermoelectric properties of Sn-doped samples improved only at room temperature to ~580 K compared with pure GeTe. The synergistic effect of multi-element doping is a comprehensive reflection of the interaction between elements rather than the sum of all the effects of single-element doping.

SELECTION OF CITATIONS
SEARCH DETAIL
...