Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
ACS Nano ; 18(20): 13286-13297, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728215

ABSTRACT

The ideal interface design between the metal and substrate is crucial in determining the overall performance of the alkyne semihydrogenation reaction. Single-atom alloys (SAAs) with isolated dispersed active centers are ideal media for the study of reaction effects. Herein, a charge-asymmetry "armor" SAA (named Pd1Fe SAA@PC), which consists of a Pd1Fe alloy core and a semiconducting P-doped C (PC) shell, is rationally designed as an ideal catalyst for the selective hydrogenation of alkynes with high efficiency. Multiple spectroscopic analyses and density functional theory calculations have demonstrated that Pd1Fe SAA@PC is dual-regulated by lattice tensile and Schottky effects, which govern the selectivity and activity of hydrogenation, respectively. (1) The PC shell layer applied an external traction force causing a 1.2% tensile strain inside the Pd1Fe alloy to increase the reaction selectivity. (2) P doping into the C-shell layer realized a transition from a p-type semiconductor to an n-type semiconductor, thereby forming a unique Schottky junction for advancing alkyne semihydrogenation activity. The dual regulation of lattice strain and the Schottky effect ensures the excellent performance of Pd1Fe SAA@PC in the semihydrogenation reaction of phenylethylene, achieving a conversion rate of 99.9% and a selectivity of 98.9% at 4 min. These well-defined interface modulation strategies offer a practical approach for the rational design and performance optimization of semihydrogenation catalysts.

2.
Food Chem X ; 22: 101405, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38694543

ABSTRACT

This study investigated the effect of inulin with different polymerization degrees (DP), including L-inulin (DP 2-6), M-inulin (DP 10-23) and H-inulin (DP 23-46), on the structural and gelation properties of potato protein isolate (PPI). Results revealed that textural properties (hardness, cohesiveness, springiness and chewiness) and water-holding capacity (WHC) of PPI-inulin composite gels were positively correlated with the inulin DP and addition content at 0-1.5% (w/v), but deteriorated at 2% due to phase separation. The addition of 1.5% H-inulin showed the most significant increment effects on the WHC (18.65%) and hardness (2.84 N) of PPI gel. Furthermore, M-/H-inulin were more effective in increasing the whiteness and surface hydrophobicity, as well as in strengthening hydrogen bonds and hydrophobic interactions than L-inulin. Fourier transform infrared spectroscopy analysis and microstructural observation indicated that inulin with higher DP promoted more generation of ß-sheet structures, and leading to the formation of stronger and finer network structures.

3.
Adv Mater ; : e2400639, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664988

ABSTRACT

Lithium-sulfur (Li-S) batteries, operated through the interconversion between sulfur and solid-state lithium sulfide, are regarded as next-generation energy storage systems. However, the sluggish kinetics of lithium sulfide deposition/dissolution, caused by its insoluble and insulated nature, hampers the practical use of Li-S batteries. Herein, leaf-like carbon scaffold (LCS) with the modification of Mo2C clusters (Mo2C@LCS) is reported as host material of sulfur powder. During cycles, the dissociative Mo ions at the Mo2C@LCS/electrolyte interface are detected to exhibit competitive binding energy with Li ions for lithium sulfide anions, which disrupts the deposition behavior of crystalline lithium sulfide and trends a shift in the configuration of lithium sulfide toward an amorphous structure. Combining the related electrochemical study and first-principle calculation, it is revealed that the formation of amorphous lithium sulfides shows significantly improved kinetics for lithium sulfide deposition and decomposition. As a result, the obtained Mo2C@LCS/S cathode shows an ultralow capacity decay rate of 0.015% per cycle at a high mass loading of 9.5 mg cm-2 after 700 cycles. More strikingly, an ultrahigh sulfur loading of 61.2 mg cm-2 can also be achieved. This work defines an efficacious strategy to advance the commercialization of Mo2C@LCS host for Li-S batteries.

4.
Angew Chem Int Ed Engl ; 63(20): e202402910, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38441480

ABSTRACT

The challenge of constructing a mechanically robust yet lightweight artificial solid-electrolyte interphase layer on lithium (Li) anodes highlights a trade-off between high battery safety and high energy density. Inspired by the intricate microstructure of the white sea urchin, we first develop a polyvinyl fluoride-hexafluoropropylene (PVDF-HFP) interfacial layer with a triple periodic minimal surface structure (TPMS) that could offer maximal modulus with minimal weight. This design endows high mechanical strength to an ordered porous structure, effectively reduces local current density, polarization, and internal resistance, and stabilizes the anode interface. At a low N/P ratio of ~3, using LiFePO4 as the cathode, Li anodes protected by TPMS-structured PVDF-HFP achieve an extremely low capacity-fading-rate of approximately 0.002 % per cycle over 200 cycles at 1 C, with an average discharge capacity of 142 mAh g-1. Meanwhile, the TPMS porous structure saves 50 wt % of the interfacial layer mass, thereby enhancing the energy density of the battery. The TPMS structure is conducive to large-scale additive manufacturing, which will provide a reference for the future development of lightweight, high-energy-density secondary batteries.

5.
Adv Sci (Weinh) ; : e2310166, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544352

ABSTRACT

Advanced lithium-ion batteries (LIBs) are crucial to portable devices and electric vehicles. However, it is still challenging to further develop the current anodic materials such as graphite due to the intrinsic limited capacity and sluggish Li-ion diffusion. Indium nitride (InN), which is a new type of anodic material with low redox potential (<0.7 V vs Li/Li+) and narrow bandgap (0.69 eV), may serve as a new high-energy density anode material for LIBs. Here, the growth of 1D single crystalline InN nanowires is reported on Au-decorated carbon fibers (InN/Au-CFs) via chemical vapor deposition, possessing a high aspect ratio of 400. The binder-free Au-CFs with high conductivity can provide abundant sites and enhance binding force for the dense growth of InN nanowires, displaying shortened Li ion diffusion paths, high structural stability, and fast Li+ kinetics. The InN/Au-CFs can offer stable and high-rate Li delithiation/lithiation without Li deposition, and achieve a remarkable capacity of 632.5 mAh g-1 at 0.1 A g-1 after 450 cycles and 416 mAh g-1 at a high rate of 30 A g-1. The InN nanowires as battery anodes shall hold substantial promise for fulfilling superior long-term cycling performance and high-rate capability for advanced LIBs.

6.
Adv Mater ; : e2402071, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38382487

ABSTRACT

Photocatalytic reduction of CO2 to energy carriers is intriguing in the industry but kinetically hard to fulfil due to the lack of rationally designed catalysts. A promising way to improve the efficiency and selectivity of such reduction is to break the structural symmetry of catalysts by manipulating coordination. Here, inspired by analogous CoO6 and CoSe6 octahedral structural motifs of the Co(OH)2 and CoSe, a hetero-anionic coordination strategy is proposed to construct a symmetry-breaking photocatalyst prototype of oxygen-deficient Se-doped cobalt hydroxide upon first-principles calculations. Such involvement of large-size Se atoms in CoO6 octahedral frameworks experimentally lead to the switching of semiconductor type of cobalt hydroxide from p to n, generation of oxygen defects, and amorphization. The resultant oxygen-deficient Se,O-coordinated Co-based amorphous nanosheets exhibit impressive photocatalytic performance of CO2 to CO with a generation rate of 60.7 µmol g-1  h-1 in the absence of photosensitizer and scavenger, superior to most of the Co-based photocatalysts. This work establishes a correlation between the symmetry-breaking of catalytic sites and CO2 photoreduction performances, opening up a new paradigm in the design of amorphous photocatalysts for CO2 reduction.

7.
Adv Mater ; 36(14): e2310918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38170168

ABSTRACT

Despite of urgent needs for highly stable and efficient electrochemical water-splitting devices, it remains extremely challenging to acquire highly stable oxygen evolution reaction (OER) electrocatalysts under harsh industrial conditions. Here, a successful in situ synthesis of FeCoNiMnCr high-entropy alloy (HEA) and high-entropy oxide (HEO) heterocatalysts via a Cr-induced spontaneous reconstruction strategy is reported, and it is demonstrated that they deliver excellent ultrastable OER electrocatalytic performance with a low overpotential of 320 mV at 500 mA cm-2 and a negligible activity loss after maintaining at 100 mA cm-2 for 240 h. Remarkably, the heterocatalyst holds outstanding long-term stability under harsh industrial condition of 6 m KOH and 85 °C at a current density of as high as 500 mA cm-2 over 500 h. Density functional theory calculations reveal that the formation of the HEA-HEO heterostructure can provide electroactive sites possessing robust valence states to guarantee long-term stable OER process, leading to the enhancement of electroactivity. The findings of such highly stable OER heterocatalysts under industrial conditions offer a new perspective for designing and constructing efficient high-entropy electrocatalysts for practical industrial water splitting.

8.
Adv Mater ; 36(15): e2310428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230871

ABSTRACT

Metal hexacyanoferrates (HCFs) are viewed as promising cathode materials for potassium-ion batteries (PIBs) because of their high theoretical capacities and redox potentials. However, the development of an HCF cathode with high cycling stability and voltage retention is still impeded by the unavoidable Fe(CN)6 vacancies (VFeCN) and H2O in the materials. Here, a repair method is proposed that significantly reduces the VFeCN content in potassium manganese hexacyanoferrate (KMHCF) enabled by the reducibility of sodium citrate and removal of ligand H2O at high temperature (KMHCF-H). The KMHCF-H obtained at 90 °C contains only 2% VFeCN, and the VFeCN is concentrated in the lattice interior. Such an integrated Fe-CN-Mn surface structure of the KMHCF-H cathode with repaired surface VFeCN allows preferential decomposition of potassium bis(fluorosulfonyl)imide (KFSI) in the electrolyte, which constitutes a dense anion-dominated cathode electrolyte interphase (CEI) , inhibiting effectively Mn dissolution into the electrolyte. Consequently, the KMHCF-H cathode exhibits excellent cycling performance for both half-cell (95.2 % at 0.2 Ag-1 after 2000 cycles) and full-cell (99.4 % at 0.1 Ag-1 after 200 cycles). This thermal repair method enables scalable preparation of KMHCF with a low content of vacancies, holding substantial promise for practical applications of PIBs.

9.
Dent Mater ; 40(1): e1-e17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37891132

ABSTRACT

OBJECTIVES: Zirconia-based dental restorations and implants are gaining attention due to their bioactivity, corrosion resistance and mechanical stability. Further, surface modification of zirconia implants has been performed at the macro-, micro- and nanoscale to augment bioactivity. While zirconia's physical and chemical characteristics have been documented, its relation to mechanical performance still needs to be explored. This extensive review aims to address this knowledge gap. METHODS: This review critically compares and contrasts the findings from articles published in the domain of 'mechanical stability of zirconia\ in dentistry' based on a literature survey (Web of Science, Medline/PubMed and Scopus databases) and a review of the relevant publications in international peer-reviewed journals. Reviewing the published data, the mechanical properties of zirconia, such as fracture resistance, stress/tension, flexural strength, fatigue, and wear are detailed and discussed to understand the biomechanical compatibility of zirconia with the mechanical performance of modified zirconia in dentistry also explored. RESULTS: A comprehensive insight into dental zirconia's critical fundamental mechanical characteristics and performance is presented. Further, research challenges and future directions in this domain are recommended. SIGNIFICANCE: This review extends existing knowledge of zirconia's biomechanical performance and it they can be modulated to design the next generation of zirconia dental restorations and implants to withstand long-term constant loading.


Subject(s)
Dental Prosthesis Design , Zirconium , Zirconium/chemistry , Flexural Strength , Dental Restoration Failure , Surface Properties , Materials Testing
10.
Mol Psychiatry ; 28(9): 3994-4010, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37833406

ABSTRACT

The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.


Subject(s)
Neurons , Potassium Channels, Voltage-Gated , Mice , Animals , Neurons/metabolism , Potassium Channels, Voltage-Gated/pharmacology , Cytoskeleton/metabolism , Microtubules/metabolism , Emotions , Shaw Potassium Channels/metabolism
11.
Ultrason Sonochem ; 100: 106632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37826891

ABSTRACT

Ultrasonic assisted extraction is frequently referred to as a green environmental protection method. The flower of Citrus maxima (FCM) has been used as a health tea drink in China, although the tea drink lacks clear compound composition identification and functional research. In order to fully use Citrus fruit by-products and further explore the functional features of FCM, this paper isolated, identified, and assessed the chemical compounds in the petals, stems, styles, receptacles, stamens, and buds of FCM extract. There are 88 compounds were recovered, including 23 compounds in the bud, 21 compounds in the petal, 19 compounds in the stem, 11 compounds in the receptacle, 20 compounds in the stamen, and 13 compounds in the style. Antioxidant experiments revealed that the FCM's various compounds had observable impacts in scavenging free radicals (38.44%-58.35%). The aforementioned study demonstrates that the pomelo by-products were developed into useful components using ultrasonic aided extraction technique. FCM has flavor-rich compounds that make it suited for use as an antioxidant tea beverage and offers practical suggestions for preparing healthy products.


Subject(s)
Antioxidants , Citrus , Antioxidants/chemistry , Citrus/chemistry , Flowers/chemistry , Plant Extracts/chemistry , Tea
12.
Proc Natl Acad Sci U S A ; 120(39): e2306841120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37722061

ABSTRACT

Although direct generation of high-value complex molecules and feedstock by coupling of ubiquitous small molecules such as CO2 and N2 holds great appeal as a potential alternative to current fossil-fuel technologies, suitable scalable and efficient catalysts to this end are not currently available as yet to be designed and developed. To this end, here we prepare and characterize SbxBi1-xOy clusters for direct urea synthesis from CO2 and N2 via C-N coupling. The introduction of Sb in the amorphous BiOx clusters changes the adsorption geometry of CO2 on the catalyst from O-connected to C-connected, creating the possibility for the formation of complex products such as urea. The modulated Bi(II) sites can effectively inject electrons into N2, promoting C-N coupling by advantageous modification of the symmetry for the frontier orbitals of CO2 and N2 involved in the rate-determining catalytic step. Compared with BiOx, SbxBi1-xOy clusters result in a lower reaction potential of only -0.3 V vs. RHE, an increased production yield of 307.97 µg h-1 mg-1cat, and a higher Faraday efficiency (10.9%), pointing to the present system as one of the best catalysts for urea synthesis in aqueous systems among those reported so far. Beyond the urea synthesis, the present results introduce and demonstrate unique strategies to modulate the electronic states of main group p-metals toward their use as effective catalysts for multistep electroreduction reactions requiring C-N coupling.

13.
Adv Mater ; 35(48): e2306577, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572373

ABSTRACT

Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.

14.
Adv Mater ; 35(40): e2305587, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37545026

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2 RR) to formate is of great interest in the field of electrochemical energy. Cu-based material is an appealing electrocatalyst for the CO2 RR. However, retaining Cu2+ under the high cathodic potential of CO2 RR remains a great challenge, leading to low electrocatalytic selectivity, activity, and stability. Herein, inspired by corrosion science, a sacrificial protection strategy to stabilize interfacial crystalline CuO through embedding of active amorphous SnO2 (c-CuO/a-SnO2 ) is reported, which greatly boosts the electrocatalytic sensitivity, activity, and stability for CO2 RR to formate. The as-made hybrid catalyst can achieve superior high selectivity for CO2 RR to formate with a remarkable Faradaic efficiency (FE) of 96.7%, and a superhigh current density of over 1 A cm-2 that far outperforms industrial benchmarks (FE > 90%, current density > 300 mA cm-2 ). In situ X-ray absorption spectroscopy (XAS) and X-ray diffractionexperimental and theoretical calculation results reveal that the broadened s-orbital in interfacial a-SnO2 offers the lower orbital for extra electrons than Cu2+ , which can effectively retain nearby Cu2+ , and the high active interface significantly lowers the energy barrier of the limited step (* CO2 → * HCOO) and enhances the selectivity and activity for CO2 RR to formate.

15.
Ultrason Sonochem ; 96: 106433, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37163955

ABSTRACT

In order to address the issue of nobiletin's limited bioavailability, nobiletin nanoparticles (NNP) were created for the first time in this research employing an anti-solvent under ultrasonication-cis/reverse homogenization. Dimethyl sulfoxide (DMSO) was used as the solvent and deionized water as the anti-solvent to create the nobiletin solution. The optimal surfactant dose of surfactant dose of 0.43%; an ultrasonic period of 8.1 min, ultrasonic at a temperature of 64 °C and a solution concentration of 8.33 mg/mL, the method was optimized to obtain the minimum NNP diameter of 199.89 ± 0.02 nm. A dual optimization process of response surface PBD and BBD was used to minimize the size of HNP particles. Additionally, scanning electron microscopy revealed that the specific surface area of the NNP dramatically increased with the reduction of NNP particle size, and dissolving studies indicated the solubility and dissolution studies showed that NNP had substantially greater solubility and dissolution rates than raw nobiletin per unit time; as a result, the NNP produced by anti-solvent precipitation with a twofold homogenization system supported by ultrasound had a realistic potential for growth.

16.
Nat Methods ; 20(7): 1010-1020, 2023 07.
Article in English | MEDLINE | ID: mdl-37202537

ABSTRACT

The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.


Subject(s)
Benchmarking , Cell Tracking , Cell Tracking/methods , Machine Learning , Algorithms
17.
Int J Oral Sci ; 15(1): 15, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36977679

ABSTRACT

Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.


Subject(s)
Dental Implants , Titanium , Humans , Wound Healing , Surface Properties
18.
Pharmaceutics ; 15(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36839638

ABSTRACT

Titanium is the ideal material for fabricating dental implants with favorable biocompatibility and biomechanics. However, the chemical corrosions arising from interaction with the surrounding tissues and fluids in oral cavity can challenge the integrity of Ti implants and leach Ti ions/nanoparticles, thereby causing cytotoxicity. Various nanoscale surface modifications have been performed to augment the chemical and electrochemical stability of Ti-based dental implants, and this review discusses and details these advances. For instance, depositing nanowires/nanoparticles via alkali-heat treatment and plasma spraying results in the fabrication of a nanostructured layer to reduce chemical corrosion. Further, refining the grain size to nanoscale could enhance Ti implants' mechanical and chemical stability by alleviating the internal strain and establishing a uniform TiO2 layer. More recently, electrochemical anodization (EA) has emerged as a promising method to fabricate controlled TiO2 nanostructures on Ti dental implants. These anodized implants enhance Ti implants' corrosion resistance and bioactivity. A particular focus of this review is to highlight critical advances in anodized Ti implants with nanotubes/nanopores for local drug delivery of potent therapeutics to augment osseo- and soft-tissue integration. This review aims to improve the understanding of novel nano-engineered Ti dental implant modifications, focusing on anodized nanostructures to fabricate the next generation of therapeutic and corrosion-resistant dental implants. The review explores the latest developments, clinical translation challenges, and future directions to assist in developing the next generation of dental implants that will survive long-term in the complex corrosive oral microenvironment.

19.
Small ; 19(15): e2207742, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36610025

ABSTRACT

In consideration of high specific capacity and low redox potential, lithium metal anodes have attracted extensive attention. However, the cycling performance of lithium metal batteries generally deteriorates significantly under the stringent conditions of high temperature due to inferior heat tolerance of the solid electrolyte interphase (SEI). Herein, controllable SEI nanostructures with excellent thermal stability are established by the (trifluoromethyl)trimethylsilane (TMSCF3 )-induced interface engineering. First, the TMSCF3 regulates the electrolyte decomposition, thus generating an SEI with a large amount of LiF, Li3 N, and Li2 S nanocrystals incorporated. More importantly, the uniform distributed nanocrystals have endowed the SEI with enhanced thermostability according to the density functional theory simulations. Particularly, the sub-angstrom visualization on SEI through a conventional transmission electron microscope (TEM) is realized for the first time and the enhanced tolerance to the heat damage originating from TEM imaging demonstrates the ultrahigh thermostability of SEI. As a result, the highly thermostable interphase facilitates a substantially prolonged lifespan of full cells at a high temperature of 70 °C. As such, this work might inspire the universal interphase design for high-energy alkali-metal-based batteries applicated in a high-temperature environment.

20.
Sensors (Basel) ; 22(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36560346

ABSTRACT

This paper presents a new type of three-axis gyroscope. The gyroscope comprises two independent parts, which are nested to further reduce the structure volume. The capacitive drive was adopted. The motion equation, capacitance design, and spring design of a three-axis gyroscope were introduced, and the corresponding formulas were derived. Furthermore, the X/Y driving frequency of the gyroscope was 5954.8 Hz, the Y-axis detection frequency was 5774.5 Hz, and the X-axis detection frequency was 6030.5 Hz, as determined by the finite element simulation method. The Z-axis driving frequency was 10,728 Hz, and the Z-axis sensing frequency was 10,725 Hz. The MEMS gyroscope's Z-axis driving mode and the sensing mode's frequency were slightly mismatched, so the gyroscope demonstrated a larger bandwidth and higher Z-axis mechanical sensitivity. In addition, the structure also has good Z-axis impact resistance. The transient impact simulation of the gyroscope structure showed that the maximum stress of the sensitive structure under the impact of 10,000 g@5 ms was 300.18 Mpa. The gyroscope was produced by etching silicon wafers in DRIE mode to obtain a high aspect ratio structure, tightly connected to the glass substrate by silicon/glass anode bonding technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...