Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38642759

ABSTRACT

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Subject(s)
Charcoal , Composting , Humic Substances , Nitrogen , Phosphorus , Phosphorus/analysis , Charcoal/chemistry , Nitrogen/analysis , Composting/methods , Soil Microbiology , Drugs, Chinese Herbal/chemistry , Soil/chemistry
2.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460407

ABSTRACT

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Subject(s)
Acetates , Chlormequat , Iron Overload , Phenols , Spermatogenesis , Animals , Male , Mice , Rats , Chlormequat/metabolism , Chlormequat/toxicity , Iron Overload/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Seeds , Spermatogenesis/drug effects , Testis , eIF-2 Kinase/drug effects , eIF-2 Kinase/metabolism
3.
Water Res ; 254: 121417, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38461597

ABSTRACT

Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways. The inherent differences in electronic properties between Fe and Co can effectively trigger long-range electron rearrangement in the sp2-carbon-conjugated structure, creating more electron-rich regions for peroxymonosulfate (PMS) complexation and initiating the electron transfer process (ETP) for pollutant degradation, which imparts the synthesized catalyst (FeCo-NCB) with exceptional catalytic efficiency despite its relatively low metal content. Moreover, the FeCo-NCB/PMS system exhibits enduring decontamination efficiency in complex water matrices, satisfactory catalytic stability, and low metal leaching, signifying promising practical applications. More impressively, the spatial relationship between metal sites and electron density clouds is revealed to determine whether high-valent metal-oxo species (HVMO) are involved during the decomposition of surface complexes. Unlike single-type single-atom dispersion, where metal sites are situated within electron-rich regions, hetero-single-atom dispersion can cause the deviation of electron density clouds from the metal sites, thus hindering the in-situ oxidation of metal within the complexes and minimizing the contribution of HVMO. These findings provide new insights into the development of carbon-based SACs and advance the understanding of nonradical mechanisms underpinning Fenton-like treatments.


Subject(s)
Carbon , Environmental Pollutants , Peroxides , Oxidation-Reduction , Electron Transport , Electronics , Water
5.
Food Chem Toxicol ; 185: 114475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286265

ABSTRACT

Chlormequat chloride (CCC), as a widely used plant growth regulator, can cause impaired sperm quality and decreased testosterone synthesis in pubertal rats, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the toxicokinetics and tissue distribution of CCC, as well as the possible mechanism of CCC-induced impairment in sperm quality. The concentration of CCC reached its peak 1 h after a single dose (200 mg/kg·bw) administration in mice plasma, and a bimodal phenomenon appeared in the testes, liver, and epididymis. In vivo, 200 mg/kg CCC caused testicular damage and impaired sperm quality in pubertal mice, and the expression of p-tyrosine and GSK3α decreased in cauda epididymidis, sperm and testes. CCC also caused the down-regulation of AKAP4 and the up-regulation of calmodulin (CaM), and activated the PI3K/AKT signaling pathway in the testes. In vitro, CCC reduced the levels of p-tyrosine, AKAP4 and GSK3α, increased the level of CaM and activated the PI3K/AKT signaling pathway in GC-1 cells. CaM antagonist (W-7 hydrochloride) and PI3K inhibitor (LY294002) can effectively improve the expression of GSK3α and AKAP4 by suppressing the PI3K/AKT signaling pathway in GC-1 cells treated with CCC. It was indicated that CCC induced impairment in sperm quality might be partially related to the activation of PI3K/AKT signaling pathway mediated by CaM.


Subject(s)
Acetates , Chlormequat , Phenols , Proto-Oncogene Proteins c-akt , Mice , Rats , Male , Animals , Chlormequat/metabolism , Chlormequat/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Calmodulin/metabolism , Calmodulin/pharmacology , Semen/metabolism , Signal Transduction , Spermatozoa , Tyrosine/metabolism
6.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37908164

ABSTRACT

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Subject(s)
Adipogenesis , Lanthanum , Mice , Animals , Lanthanum/toxicity , Mice, Inbred C57BL , Wnt Signaling Pathway , beta Catenin/metabolism , Cell Differentiation
7.
Environ Sci Technol ; 57(43): 16662-16672, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37782530

ABSTRACT

Previous studies mostly held that the oxidation capacity of ferrate depends on the involvement of intermediate iron species (i.e., FeIV/FeV), however, the potential role of the metastable complex was disregarded in ferrate-based heterogeneous catalytic oxidation processes. Herein, we reported a complexation-mediated electron transfer mechanism in the ferrihydrite-ferrate system toward sulfamethoxazole (SMX) degradation. A synergy between intermediate FeIV/FeV oxidation and the intramolecular electron transfer step was proposed. Specifically, the conversion of phenyl methyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) suggested that FeIV/FeV was involved in the oxidation of SMX. Moreover, based on the in situ Raman test and chronopotentiometry analysis, the formation of the metastable complex of ferrihydrite/ferrate was found, which possesses higher oxidation potential than free ferrate and could achieve the preliminary oxidation of organics via the electron transfer step. In addition, the amino group of SMX could complex with ferrate, and the resulting metastable complex of ferrihydrite/ferrate would combine further with SMX molecules, leading to intramolecular electron transfer and SMX degradation. The ferrate loss experiments suggested that ferrihydrite could accelerate the decomposition of ferrate. Finally, the effects of pH value, anions, humic acid, and actual water on the degradation of SMX by ferrihydrite-ferrate were also revealed. Overall, ferrihydrite demonstrated high catalytic capacity, good reusability, and nontoxic performance for ferrate activation. The ferrihydrite-ferrate process may be a green and promising method for organic removal in wastewater treatment.


Subject(s)
Electrons , Water Pollutants, Chemical , Iron/chemistry , Ferric Compounds , Oxidation-Reduction , Organic Chemicals , Water Pollutants, Chemical/analysis
8.
Environ Res ; 237(Pt 2): 116974, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625537

ABSTRACT

The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.

9.
Chemosphere ; 339: 139680, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37524266

ABSTRACT

Light pollution is now associated with an increased incidence of mental disorders in humans, and the unfixed light pattern (ULP) is a common light pollution that occurs in such as rotating shift work. However, how much contribution the ULP has to depression and its potential mechanism are yet unknown. Our study aimed to investigate the effect of the ULP on depressive-like behaviors in mice and to explore the links to the circadian-orexinergic system. Male C57BL/6 J mice were exposed to the ULP by subjecting them to an alternating light pattern every 6 days for 54 days. The tail suspension test (TST) and forced swimming test (FST) were conducted to assess depressive-like behaviors. The rhythm of locomotor activity and the circadian expression of cFOS in the suprachiasmatic nucleus (SCN), clock genes in the liver, and corticosterone (CORT) in serum were detected to observe changes in the circadian system. The circadian expression of orexin-A (OX-A) in the lateral hypothalamus area (LHA) and dorsal raphe nucleus (DRN) and serotonin (5-HT) in the DRN were measured to determine alterations in the orexinergic system. The results showed that mice exposed to the ULP exhibited increased immobility time in the TST and FST. The ULP significantly disrupted the circadian rhythm of locomotor activity, clock genes in the liver, and CORT in the serum. Importantly, when exposed to the ULP, cFOS expression in the SCN showed decreased amplitude. Its projection area, the LHA, had a lower mesor of OX-A expression. OX-A projection to the DRN and 5-HT expression in the DRN were reduced in mesor. Our research suggests that the ULP contributes to depressive-like behaviors in mice, which might be related to the reduced amplitude of circadian oscillation in the SCN and hypoactivity of the orexinergic system. These findings may provide novel insights into rotating shift work-related depression.


Subject(s)
Dorsal Raphe Nucleus , Serotonin , Humans , Mice , Male , Animals , Serotonin/metabolism , Mice, Inbred C57BL , Dorsal Raphe Nucleus/metabolism , Circadian Rhythm , Orexins , Light
10.
Environ Sci Technol ; 57(30): 11122-11133, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37463333

ABSTRACT

Biodenitrification plays a vital role in the remediation of nitrogen-contaminated water. However, influent with a low C/N ratio limits the efficiency of denitrification and causes the accumulation/emission of noxious intermediates. In this study, ß-cyclodextrin-functionalized biochar (BC@ß-CD) was synthesized and applied to promote the denitrification performance of Paracoccus denitrificans when the C/N was only 4, accompanied by increased nitrate reduction efficiency and lower nitrite accumulation and nitrous oxide emission. Transcriptomic and enzymatic activity analyses showed BC@ß-CD enhanced glucose degradation by promoting the activities of glycolysis (EMP), the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. Notably, BC@ß-CD drove a great generation of electron donors by stimulating the TCA cycle, causing a greater supply of substrate metabolism to denitrification. Meanwhile, the promotional effect of BC@ß-CD on oxidative phosphorylation accelerates electron transfer and ATP synthesis. Moreover, the presence of BC@ß-CD increased the intracellular iron level, causing further improved electron utilization in denitrification. BC@ß-CD helped to remove metabolites and induced positive feedback on the metabolism of P. denitrificans. Collectively, these effects elevated the glucose utilization for supporting denitrification from 36.37% to 51.19%. This study reveals the great potential of BC@ß-CD for enhancing denitrification under low C/N conditions and illustrates a potential application approach for ß-CD in wastewater bioremediation.


Subject(s)
Electrons , beta-Cyclodextrins , Charcoal , Nitrates/metabolism , Denitrification , Nitrogen/metabolism
11.
J Hazard Mater ; 459: 132054, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37473569

ABSTRACT

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Subject(s)
Genes, Bacterial , Wastewater , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Sulfates/pharmacology , Bioreactors , Sulfur Oxides/pharmacology
12.
Bioresour Technol ; 384: 129317, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315625

ABSTRACT

This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).


Subject(s)
Anti-Bacterial Agents , Sulfamethoxazole , Fermentation , Fatty Acids, Volatile , Butyric Acid
13.
J Hazard Mater ; 454: 131463, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37141778

ABSTRACT

Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.

14.
Environ Res ; 231(Pt 1): 115996, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37105290

ABSTRACT

Accurately determining the second-order rate constant with eaq- (keaq-) for organic compounds (OCs) is crucial in the eaq- induced advanced reduction processes (ARPs). In this study, we collected 867 keaq- values at different pHs from peer-reviewed publications and applied machine learning (ML) algorithm-XGBoost and deep learning (DL) algorithm-convolutional neural network (CNN) to predict keaq-. Our results demonstrated that the CNN model with transfer learning and data augmentation (CNN-TL&DA) greatly improved the prediction results and overcame over-fitting. Furthermore, we compared the ML/DL modeling methods and found that the CNN-TL&DA, which combined molecular images (MI), achieved the best overall performance (R2test = 0.896, RMSEtest = 0.362, MAEtest = 0.261) when compared to the XGBoost algorithm combined with Mordred descriptors (MD) (0.692, RMSEtest = 0.622, MAEtest = 0.399) and Morgan fingerprint (MF) (R2test = 0.512, RMSEtest = 0.783, MAEtest = 0.520). Moreover, the interpretation of the MD-XGBoost and MF-XGBoost models using the SHAP method revealed the significance of MDs (e.g., molecular size, branching, electron distribution, polarizability, and bond types), MFs (e.g, aromatic carbon, carbonyl oxygen, nitrogen, and halogen) and environmental conditions (e.g., pH) that effectively influence the keaq- prediction. The interpretation of the 2D molecular image-CNN (MI-CNN) models using the Grad-CAM method showed that they correctly identified key functional groups such as -CN, -NO2, and -X functional groups that can increase the keaq- values. Additionally, almost all electron-withdrawing groups and a small part of electron-donating groups for the MI-CNN model can be highlighted for estimating keaq-. Overall, our results suggest that the CNN approach has smaller errors when compared to ML algorithms, making it a promising candidate for predicting other rate constants.


Subject(s)
Deep Learning , Electrons , Neural Networks, Computer , Machine Learning , Algorithms
15.
Sci Total Environ ; 880: 163054, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36963691

ABSTRACT

The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.


Subject(s)
Atrazine , Eleutherococcus , Water Pollutants, Chemical , Atrazine/toxicity , Atrazine/analysis , Medicine, Chinese Traditional , Metals , Charcoal/chemistry , Water Pollutants, Chemical/analysis
16.
Bioresour Technol ; 377: 128914, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36940881

ABSTRACT

Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.41% SRE, while maintaining carbon and nitrogen removal efficiency. Micro-aerobic in mainstream accelerated the hydrolysis of particulate organic matter (POM) and promoted denitrification. Micro-aerobic in side-stream increased cell lysis and ATP dissipation, thus increasing SRE. Microbial community structure indicated that the cooperative interactions among hydrolytic, slow growing, predatory and fermentation bacteria played key roles in improving SRE. This study confirmed that SSR coupled micro-aerobic was a promising and practical process, which could benefit nitrogen removal and sludge reduction in municipal wastewater treatment plants.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/microbiology , Anaerobiosis , Bioreactors/microbiology , Fermentation , Nitrogen
17.
J Environ Manage ; 329: 116904, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36528943

ABSTRACT

The apparent second-order rate constant with hexavalent ferrate (Fe(VI)) (kFe(VI)) is a key indicator to evaluate the removal efficiency of a molecule by Fe(VI) oxidation. kFe(VI) is often determined by experiment, but such measurements can hardly catch up with the rapid growth of organic compounds (OCs). To address this issue, in this study, a total of 437 experimental second-order kFe(VI) rate constants at a range of conditions (pH and temperature) were used to train four machine learning (ML) algorithms (lasso regression (LR), ridge regression (RR), extreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM)). Using the Morgan fingerprint (MF)) of a range of organic compounds (OCs) as the input, the performance of the four algorithms was comprehensively compared with respect to the coefficient of determination (R2) and root-mean-square error (RMSE). It is shown that the RR, XGBoost, and LightGBM models displayed generally acceptable performance kFe(VI) (R2test > 0.7). In addition, the shapely additive explanation (SHAP) and feature importance methods were employed to interpret the XGBoost/LightGBM and RR models, respectively. The results showed that the XGBoost/LightGBM and RR models suggestd pH as the most important predictor and the tree-based models elucidate how electron-donating and electron-withdrawing groups influence the reactivity of the Fe(VI) species. In addition, the RR model share eight common features, including pH, with the two tree-based models. This work provides a fast and acceptable method for predicting kFe(VI) values and can help researchers better understand the degradation behavior of OCs by Fe(VI) oxidation from the perspective of molecular structure.


Subject(s)
Iron , Water Pollutants, Chemical , Kinetics , Iron/chemistry , Oxidation-Reduction , Water , Organic Chemicals , Water Pollutants, Chemical/chemistry
18.
J Hazard Mater ; 442: 130115, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36303349

ABSTRACT

The enhancement of electron transport process on multiple channels of C-Fe and C-S-Fe bonds between dual-reaction centres was investigated for stimulating the antibiotics degradation in Fenton-like processes. Herein, multiple channels structure of sulfur-doped carbon coupled Fe7S8 cluster through C-Fe bond and C-S-Fe bond was constructed through density functional theory (DFT), and S-doped carbon framework coated Fe7S8 nanoparticles (Fe7S8/SC) Fenton-like catalyst was prepared through hydrothermal and subsequent sulfuration process. The DFT calculations revealed that electrons are thermodynamically transferred from carbon to iron along both C-Fe and C-S-Fe bonds. The optimized Fe7S8/SC catalyst exhibited desirable catalytic property for Fenton-like degradation for various antibiotics, the removal of amoxicillin, norfloxacin, and tetracycline hydrochloride reach 98.9%, 97.8%, and 99.3% respectively within 40 min under neutral pH, and catalyst also demonstrated excellent cycle stability after five runs. The excellent degradation effect of antibiotics by Fenton-like catalyst was attributed to the intensified electron transport process by multiple electron transfer channels between dual reaction centres, making FeII easier to regenerate. This study spreads a new route for the enhancement of electron transport process in Fenton-like catalysts by constructing multiple channels.


Subject(s)
Anti-Bacterial Agents , Electrons , Carbon , Hydrogen Peroxide/chemistry , Electron Transport , Catalysis
19.
Sci Total Environ ; 855: 158849, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36122730

ABSTRACT

In order to promote low-carbon sustainable operational management of the wastewater treatment plants (WWTPs), automatic control and optimal operation technologies, which devote to improving effluent quality, operational costs and greenhouse gas (GHG) emissions, have flourished in recent years. There is no consensus on the design procedure for optimal control/operation of sustainable WWTPs. In this review, we summarize recent researches on developing control and optimization strategies for GHG mitigation in WWTPs. Faced with the fact that direct carbon dioxide (CO2) emissions (considered biological origin) are generally not included in the carbon footprint of WWTPs, direct emissions (nitrous oxide (N2O), methane (CH4)) and indirect emissions are paid much attention. Firstly, the plant-wide models with GHG dynamic simulation, which are employed to design and evaluate the automatic control schemes as well as representative studies on identifying key factors affecting GHG emissions or comprehensive performance are outlined. Then, both traditional and advanced control methods commonly used in GHG mitigation are reviewed in detail, followed by the multi-objective optimization practices of control/operational parameters. Based on the mentioned control and (or) optimization strategies, a novel design framework for the optimal control/operation of sustainable WWTPs is proposed. The findings and design framework proposed in the paper will provide guidance for GHG mitigation and sustainable operation in WWTPs. It is foreseeable that more accurate and appropriate plant-wide models together with flexible control methods and intelligent optimization strategies will be developed to satisfy the upgrading requirements of WWTPs in the future.


Subject(s)
Greenhouse Gases , Water Purification , Greenhouse Effect , Waste Disposal, Fluid/methods , Nitrous Oxide/analysis
20.
Environ Sci Ecotechnol ; 10: 100165, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36159730

ABSTRACT

The efficient activation and utilization of peroxymonosulfate (PMS) in PMS-based advanced oxidation processes is a high-priority target for the removal of organic contaminants. This work introduces a water vortex-driven piezoelectric effect from few-odd-layered MoS2 into the PMS activation to remove benzotriazole (BTR) and other organic contaminants from the water. Approximately 91.1% of BTR can be removed by the MoS2 piezo-activated PMS process with a reaction rate constant of 0.428 min-1, which is 2.09 times faster than the sum of the individual MoS2, water vortex, and piezocatalysis rates. Meanwhile, the PMS utilization efficiency reached 0.0147 in the water vortex-driven piezo-activation system, which is 3.97 times that of the sum from the vortex/PMS and MoS2/PMS systems. These results demonstrate that the presence of MoS2 under a water vortex can trigger a piezoelectric potential and generate abundant free electrons to activate PMS to generate various active species for degradation of organic contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...