Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Environ Technol ; : 1-11, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955504

ABSTRACT

As volatile organic compounds (VOCs), gaseous ethylbenzene has adverse effects on human health and ecology. Therefore, an effective degradation process is highly desirable. The Fenton process under UV 365 nm was selected as the first option to remove gaseous ethylbenzene in a bubble column reactor. The main parameters for the batch experiments were systematically studied, including H2O2 concentration, [H2O2]/[Fe2+], pH, UV wavelength, UV intensity, gaseous ethylbenzene concentration, gas flow rate, and process stability towards removal efficiency. The optimum conditions were found to be H2O2 concentration of 100 mmol·L-1, [H2O2]/[Fe2+] of 4, pH of 3.0, UV wavelength of 365 nm, UV power of 5 W, gas flow rate of 900 mL·min-1, and gaseous ethylbenzene concentration of 30 ppm, resulting in a removal efficiency of 76.3%. The study found that the Fenton process, when coupled with UV 365 nm, was highly effective in removing gaseous ethylbenzene. The degradation mechanism of gaseous ethylbenzene was proposed in the UV365/Fenton process based on EPR, radical quenching experiments, iron analysis, carbon balance, and GC-MS analysis. The results indicated that •OH played a crucial role in the process.

2.
Front Immunol ; 15: 1387811, 2024.
Article in English | MEDLINE | ID: mdl-38911870

ABSTRACT

The Nipah virus (NiV), a highly deadly bat-borne paramyxovirus, poses a substantial threat due to recurrent outbreaks in specific regions, causing severe respiratory and neurological diseases with high morbidity. Two distinct strains, NiV-Malaysia (NiV-M) and NiV-Bangladesh (NiV-B), contribute to outbreaks in different geographical areas. Currently, there are no commercially licensed vaccines or drugs available for prevention or treatment. In response to this urgent need for protection against NiV and related henipaviruses infections, we developed a novel homotypic virus-like nanoparticle (VLP) vaccine co-displaying NiV attachment glycoproteins (G) from both strains, utilizing the self-assembling properties of ferritin protein. In comparison to the NiV G subunit vaccine, our nanoparticle vaccine elicited significantly higher levels of neutralizing antibodies and provided complete protection against a lethal challenge with NiV infection in Syrian hamsters. Remarkably, the nanoparticle vaccine stimulated the production of antibodies that exhibited superior cross-reactivity to homologous or heterologous henipavirus. These findings underscore the potential utility of ferritin-based nanoparticle vaccines in providing both broad-spectrum and long-term protection against NiV and emerging zoonotic henipaviruses challenges.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Ferritins , Henipavirus Infections , Mesocricetus , Nanoparticles , Nipah Virus , Viral Vaccines , Animals , Nipah Virus/immunology , Henipavirus Infections/prevention & control , Henipavirus Infections/immunology , Ferritins/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Cricetinae , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Female , Humans , Nanovaccines
3.
Curr Neurovasc Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918992

ABSTRACT

BACKGROUND: Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma. AIMS: This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets. METHODS: Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blottingin C57BL/6J mice. RESULTS: Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair neurotrophy and pericytes proliferation mediated by upstream VEGFR2. CONCLUSION: Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.

4.
Front Chem ; 12: 1381835, 2024.
Article in English | MEDLINE | ID: mdl-38915902

ABSTRACT

Long-chain esters (LCEs) are known to affect aroma perception, but the mechanism of their effects remains unclear. In this study, ethyl palmitate (EP), an important LCE in Osmanthus fragrans flower absolute (OFFA), was selected as a target to identify its role and mechanism. The release characteristics of 10 aroma compounds from OFFA with and without EP were obtained by headspace gas chromatography mass spectrometry (HS-GC/MS) and olfactometry evaluation, respectively. The results show that EP changes the release behaviors of volatile compounds in solution, increases their olfactory detection thresholds (ODTs), and reduces the equilibrium headspace concentrations. According to Whitman's two-film model, EP was found to change the partition coefficients and mass transfer coefficients of the compounds between the liquid and gas phases. This indicates that EP plays an important role in the scent formation of a flavor product and that it is very valuable for the style design of the flavor product.

5.
Phytomedicine ; 130: 155741, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38772182

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a chronic recurrent intestinal disease lacking effective treatments. ß-arbutin, a glycoside extracted from the Arctostaphylos uva-ursi leaves, that can regulate many pathological processes. However, the effects of ß-arbutin on UC remain unknown. PURPOSE: In this study, we investigated the role of ß-arbutin in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS: In C75BL/6 J mice, DSS was used to induce colitis and concomitantly ß-arbutin (50 and 100 mg/kg) was taken orally to evaluate its curative effect by evaluating disease activity index (DAI) score, colon length and histopathology. Alcian blue periodic acid schiff (AB-PAS) staining, immunohistochemistry (IHC), immunofluorescence (IF) and TdT-mediated dUTP Nick-End Labeling (Tunel) staining were used to assess intestinal barrier function. Flow cytometry, double-IF and western blotting (WB) were performed to verify the regulatory mechanism of ß-arbutin on neutrophil extracellular traps (NETs) in vivo and in vitro. NETs depletion experiments were used to demonstrate the role of NETs in UC. Subsequently, the 16S rRNA gene sequencing was used to analyze the intestinal microflora of mouse. RESULTS: Our results showed that ß-arbutin can protect mice from DSS-induced colitis characterized by a lower DAI score and intestinal pathological damage. ß-arbutin reduced inflammatory factors secretion, notably regulated neutrophil functions, and inhibited NETs formation in an ErK-dependent pathway, contributing to the resistance to colitis as demonstrated by in vivo and in vitro experiments. Meanwhile, remodeled the intestinal flora structure and increased the diversity and richness of intestinal microbiota, especially the abundance of probiotics and butyric acid-producing bacteria. It further promoted the protective effect in the resistance of colitis. CONCLUSION: ß-arbutin promoted the maintenance of intestinal homeostasis by inhibiting NETs formation, maintaining mucosal-barrier integrity, and shaping gut-microbiota composition, thereby alleviating DSS-induced colitis. This study provided a scientific basis for the rational use of ß-arbutin in preventing colitis and other related diseases.


Subject(s)
Arbutin , Dextran Sulfate , Disease Models, Animal , Extracellular Traps , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Extracellular Traps/drug effects , Gastrointestinal Microbiome/drug effects , Mice , Arbutin/pharmacology , Male , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Neutrophils/drug effects , Colitis/drug therapy , Colitis/chemically induced , Colon/drug effects , Colon/pathology
6.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38700925

ABSTRACT

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Subject(s)
Paramyxoviridae Infections , Paramyxovirinae , Paramyxovirinae/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Mammals , China , Phylogeny , Genome, Viral , Host Specificity
7.
Nat Genet ; 56(6): 1257-1269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802564

ABSTRACT

Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Triticum , Triticum/genetics , Plant Proteins/genetics , Salt Tolerance/genetics , Cation Transport Proteins/genetics , Genome-Wide Association Study , Oryza/genetics , Symporters/genetics , Symporters/metabolism , Bread , Plants, Genetically Modified , Brachypodium/genetics , Salinity
8.
Acta Otolaryngol ; 144(3): 159-167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38742731

ABSTRACT

BACKGROUND: In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown. OBJECTIVES: To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion. MATERIAL AND METHODS: Twelve minipigs were selected for electrode array insertion (EAI) and the Control. Hearing tests were performed preoperatively and on 0, 7, 14, and 28 day(s) postoperatively, and cochlear histopathology was performed after the hearing tests on 7, 14, and 28 days after surgery. RESULTS: Electrode array insertion had a significant effect for the frequency range tested (1 kHz-20kHz). Exudation was evident one week after electrode array insertion; at four weeks postoperatively, a fibrous sheath formed around the electrode. At each time point, the endolymphatic hydrops was found; no significant changes in the morphology and packing density of the spiral ganglion neurons were observed. CONCLUSIONS AND SIGNIFICANCE: The effect of electrode array insertion on hearing and intracochlear fibrosis was significant. The process of fibrosis and endolymphatic hydrops seemed to not correlate with the degree of hearing loss, nor did it affect spiral ganglion neuron integrity in the 4-week postoperative period.


Subject(s)
Cochlea , Cochlear Implantation , Cochlear Implants , Swine, Miniature , Animals , Swine , Cochlea/pathology , Cochlear Implants/adverse effects , Cochlear Implantation/methods , Cochlear Implantation/adverse effects , Fibrosis , Electrodes, Implanted/adverse effects
9.
Soft Matter ; 20(20): 4052-4056, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738402

ABSTRACT

Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.

10.
Chemistry ; : e202400983, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747632

ABSTRACT

Electrochemical CO2 reduction is a promising method for converting atmospheric CO2 into valuable low-carbon chemicals. In this study, a crystalline cadmium sulfide/amorphous cadmium hydroxide composite was successfully deposited on the carbon paper substrate surface by in-situ chemical bath deposition (named as c-CdS/a-Cd(OH)2/CP electrodes) for the efficient electrochemical CO2 reduction to produce CO. The c-CdS/a-Cd(OH)2/CP electrode exhibited high CO Faradaic efficiencies (>90 %) under a wide potential window of 1.0 V, with the highest value reaching ~100 % at the applied potential ranging from -2.16 V to -2.46 V vs. ferrocene/ferrocenium (Fc/Fc+), superior to the crystalline counterpart c-CdS/CP and c-CdS/c-Cd(OH)2@CP electrodes. Meanwhile, the CO partial current density reached up to 154.7 mA cm-2 at -2.76 V vs. Fc/Fc+ on the c-CdS/a-Cd(OH)2/CP electrode. The excellent performance of this electrode was mainly ascribed to its special three-dimensional structure and the introduction of a-Cd(OH)2. These structures could provide more active sites, accelerate the charge transfer, and enhance adsorption of *COOH intermediates, thereby improving the CO selectivity. Moreover, the electrolytes consisting of 1-butyl-3-methylimidazolium tetrafluoroborate and acetonitrile also enhanced the reaction kinetics of electrochemical CO2 reduction to CO.

11.
Cell Discov ; 10(1): 54, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769343

ABSTRACT

A long-standing hypothesis proposes that certain RNA(s) must exhibit structural roles in microtubule assembly. Here, we identify a long noncoding RNA (TubAR) that is highly expressed in cerebellum and forms RNA-protein complex with TUBB4A and TUBA1A, two tubulins clinically linked to cerebellar and myelination defects. TubAR knockdown in mouse cerebellum causes loss of oligodendrocytes and Purkinje cells, demyelination, and decreased locomotor activity. Biochemically, we establish the roles of TubAR in promoting TUBB4A-TUBA1A heterodimer formation and microtubule assembly. Intriguingly, different from the hypomyelination-causing mutations, the non-hypomyelination-causing mutation TUBB4A-R2G confers gain-of-function for an RNA-independent interaction with TUBA1A. Experimental use of R2G/A mutations restores TUBB4A-TUBA1A heterodimer formation, and rescues the neuronal cell death phenotype caused by TubAR knockdown. Together, we uncover TubAR as the long-elusive structural RNA for microtubule assembly and demonstrate how TubAR mediates microtubule assembly specifically from αß-tubulin heterodimers, which is crucial for maintenance of cerebellar myelination and activity.

12.
Gut Microbes ; 16(1): 2357177, 2024.
Article in English | MEDLINE | ID: mdl-38781112

ABSTRACT

The prevalence of eating disorders has been increasing over the last 50 years. Binge eating disorder (BED) and bulimia nervosa (BN) are two typical disabling, costly and life-threatening eating disorders that substantially compromise the physical well-being of individuals while undermining their psychological functioning. The distressing and recurrent episodes of binge eating are commonly observed in both BED and BN; however, they diverge as BN often involves the adoption of inappropriate compensatory behaviors aimed at averting weight gain. Normal eating behavior is coordinated by a well-regulated trade-off between intestinal and central ingestive mechanism. Conversely, despite the fact that the etiology of BED and BN remains incompletely resolved, emerging evidence corroborates the notion that dysbiosis of gastrointestinal microbiome and its metabolites, alteration of gut-brain axis, as well as malfunctioning central circuitry regulating motivation, execution and reward all contribute to the pathology of binge eating. In this review, we aim to outline the current state of knowledge pertaining to the potential mechanisms through which each component of the gut-brain axis participates in binge eating behaviors, and provide insight for the development of microbiome-based therapeutic interventions that hold promise in ameliorating patients afflicted with binge eating disorders.


Subject(s)
Binge-Eating Disorder , Brain-Gut Axis , Brain , Dysbiosis , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Binge-Eating Disorder/microbiology , Binge-Eating Disorder/physiopathology , Binge-Eating Disorder/metabolism , Brain-Gut Axis/physiology , Brain/microbiology , Brain/physiopathology , Animals , Dysbiosis/microbiology , Feeding Behavior
14.
Nanomicro Lett ; 16(1): 180, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662149

ABSTRACT

The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction (OER) due to the "stable-or-active" dilemma. Zirconium dioxide (ZrO2), a versatile and low-cost material that can be stable under OER operating conditions, exhibits inherently poor OER activity from experimental observations. Herein, we doped a series of metal elements to regulate the ZrO2 catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions. Microkinetic modeling as a function of the OER activity descriptor (GO*-GHO*) displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO2 surface, among which Fe and Rh (in the form of single-atom dopant) reach the volcano peak (i.e. the optimal activity of OER under the potential of interest), indicating excellent OER performance. Free energy diagram calculations, density of states, and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO2, leading to low OER overpotential, high conductivity, and good stability. Considering cost-effectiveness, single-atom Fe doped ZrO2 emerged as the most promising catalyst for OER. This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.

15.
Viruses ; 16(3)2024 02 21.
Article in English | MEDLINE | ID: mdl-38543694

ABSTRACT

Wild birds are considered to be the natural reservoir hosts of avian influenza viruses (AIVs). Wild bird-origin AIVs may spill over into new hosts and overcome species barriers after evolutionary adaptation. H13N8 AIVs used to be considered primarily circulated in multispecies gulls but have recently been shown to possess cross-species infectivity. In this study, we analyzed the genetic changes that occurred in the process of the evolution of H13 AIVs. Phylogenetic analysis revealed that H13 AIVs underwent complex reassortment events. Based on the full genomic diversity, we divided H13 AIVs into 81 genotypes. Reassortment experiments indicated that basic polymerase 2 (PB2) and nucleoprotein (NP) genes of the H9N2 AIV significantly enhanced the polymerase activity of the H13N8 AIV. Using the replication-incompetent virus screening system, we identified two mutations, PB2-I76T and PB2-I559T, which could enhance the polymerase activity of the H13N8 AIV in mammalian cells. Notably, these mutations had been acquired by circulating H13N8 AIVs in 2015. These findings suggest that H13N8 AIVs are about to cross the host barrier. Occasional genetic reassortments with other AIVs and natural mutation events could promote this process. It is imperative to intensify monitoring efforts for H13N8 AIVs.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Birds , Animals, Wild , Mammals
16.
Anal Chem ; 96(13): 5215-5222, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38506337

ABSTRACT

Stimuli-responsive DNA hydrogels have shown great potential in sensing applications due to their attractive properties such as programmable target responsiveness, excellent biocompatibility, and biodegradability. In contrast to the extensively developed DNA hydrogel sensing systems based on the stimuli-responsive hydrogel-to-solution phase transition of the hydrogel matrix, the quantitative sensing application of DNA hydrogels exhibiting smart shape deformations has rarely been explored. Moreover, bulk DNA hydrogel-based sensing systems also suffer from high material cost and slow response. Herein, free-standing bilayer polyacrylamide/DNA hybrid hydrogel films with programmable responsive properties directed by the sequence of functional DNA units have been constructed. Compared with bulk DNA hydrogels, these DNA hydrogel films with a thickness at the micrometer scale not only greatly reduce the consumption of DNA materials but also facilitate the mass transfer of biomacromolecular substances within the hydrogel network, thus favoring their sensing applications. Therefore, a target-responsive smart DNA hydrogel film-based sensor system is further demonstrated based on the large amplitude macroscopic shape deformation of the film as a visual signal readout. As a proof of concept, Pb2+ or UO22+ ion-responsive DNA units were introduced into the active layer of the bilayer hydrogel films. In the presence of Pb2+ or UO22+ ions, the occurrence of a cleavage reaction within the DNA units leads to the release of DNA segments from the hydrogel film, inducing a dramatic shape deformation of the film, and thus sensing of Pb2+ or UO22+ ions with high specificity is achieved based on measuring the bending angle changes of these smart free-standing films. These smart DNA hydrogel film sensors with target-programmable responsiveness, simple operation, and ease of storage may hold promise for future rapid on-site testing applications.


Subject(s)
Acrylic Resins , Hydrogels , Lead , Methylgalactosides , DNA , Ions
17.
Zool Res ; 45(2): 284-291, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38485498

ABSTRACT

Hereditary hearing loss (HHL), a genetic disorder that impairs auditory function, significantly affects quality of life and incurs substantial economic losses for society. To investigate the underlying causes of HHL and evaluate therapeutic outcomes, appropriate animal models are necessary. Pigs have been extensively used as valuable large animal models in biomedical research. In this review, we highlight the advantages of pig models in terms of ear anatomy, inner ear morphology, and electrophysiological characteristics, as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss. Additionally, we discuss the prospects, challenges, and recommendations regarding the use pig models in HHL research. Overall, this review provides insights and perspectives for future studies on HHL using porcine models.


Subject(s)
Ear, Inner , Hearing Loss, Sensorineural , Hearing Loss , Swine Diseases , Animals , Swine/genetics , Quality of Life , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/veterinary , Hearing Loss/genetics , Hearing Loss/therapy , Hearing Loss/veterinary , Models, Animal
18.
Heliyon ; 10(5): e26775, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439873

ABSTRACT

Existing approaches to 3D medical image segmentation can be generally categorized into convolution-based or transformer-based methods. While convolutional neural networks (CNNs) demonstrate proficiency in extracting local features, they encounter challenges in capturing global representations. In contrast, the consecutive self-attention modules present in vision transformers excel at capturing long-range dependencies and achieving an expanded receptive field. In this paper, we propose a novel approach, termed SCANeXt, for 3D medical image segmentation. Our method combines the strengths of dual attention (Spatial and Channel Attention) and ConvNeXt to enhance representation learning for 3D medical images. In particular, we propose a novel self-attention mechanism crafted to encompass spatial and channel relationships throughout the entire feature dimension. To further extract multiscale features, we introduce a depth-wise convolution block inspired by ConvNeXt after the dual attention block. Extensive evaluations on three benchmark datasets, namely Synapse, BraTS, and ACDC, demonstrate the effectiveness of our proposed method in terms of accuracy. Our SCANeXt model achieves a state-of-the-art result with a Dice Similarity Score of 95.18% on the ACDC dataset, significantly outperforming current methods.

20.
Chem Commun (Camb) ; 60(26): 3575-3578, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470032

ABSTRACT

ZnO quantum dots (QDs) supported on porous nitrogen-doped carbon (ZnOQDs/P-NC) exhibited excellent electrochemical performance for the electroreduction of CO2 to CO with a faradaic efficiency of 95.3% and a current density of 21.6 mA cm-2 at -2.2 V vs. Ag/Ag+.

SELECTION OF CITATIONS
SEARCH DETAIL
...