Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Inflamm Res ; 17: 5347-5363, 2024.
Article in English | MEDLINE | ID: mdl-39161678

ABSTRACT

Purpose: To investigate the prognostic significance of pan-immune-inflammation value (PIV) and PILE score (based on PIV, lactate dehydrogenase (LDH), and Eastern Cooperative Oncology Group Performance Status (ECOG PS)) in patients with primary central nervous system lymphoma (PCNSL). Patients and Methods: A total of 109 patients were enrolled. PIV was calculated as follows: (neutrophil count × platelet count × monocyte count)/lymphocyte count. The PILE score was incorporated based on PIV, LDH levels, and ECOG PS. The Kaplan-Meier curves and Cox hazards regression models were applied for survival analyses. The relationship between PIV, PILE, and therapeutic response was examined. Results: Baseline high PIV was significantly associated with worse overall survival (OS) in univariate (HR 3.990, 95% CI 1.778-8.954, p < 0.001) and multivariate (HR 3.047, 95% CI 1.175-7.897, p = 0.022) analyses. High PIV was also associated with worse progression-free survival (PFS) in univariate (HR 2.121, 95% CI 1.075-4.186, p = 0.030) but not significant in multivariate analyses. PIV outperformed other systemic inflammation parameters. The patients in the high PILE group (PILE score 2-3) had worse OS (p = 0.008) and PFS (p < 0.001) compared to the low PILE group (PILE score 0-1). PILE was independently associated with therapeutic response to initial treatment (OR 0.17, 95% CI 0.05-0.46; p < 0.001). Conclusion: High PIV and PILE were correlated with worse clinical outcomes in PCNSL patients, indicating that PIV and PILE might be a powerful predictor of prognosis and a potential predictive indicator for therapeutic response in PCNSL.

2.
Sci Rep ; 14(1): 18017, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097630

ABSTRACT

For the polarization multiplexing requirements in all-optical networks, this work presents a compact all-fiber polarization beam splitter (PBS) based on dual-core photonic crystal fiber (PCF) and an elliptical gold layer. Numerical analysis using the finite element method (FEM) demonstrates that the mode modulation effect of the central gold layer effectively reduces the dimensions of the proposed PBS. By determining reasonable structural parameters of the proposed PCF, the coupling length ratio (CLR) between X- and Y-polarized super-modes can approach 2, achieving a minimal device length of 0.122 mm. The PBS exhibits a maximum extinction ratio (ER) of - 65 dB at 1.55 µm, with an operating bandwidth spanning 100 nm (1.5-1.6 µm) and a stable insertion loss (IL) of ~ 1.5 dB at 1.55 µm. Furthermore, the manufacture feasibility and performance verification scheme are also investigated. It is widely anticipated that the designed PBS will play a crucial role in the ongoing development process of miniaturization and integration of photonic devices.

3.
Cell Mol Life Sci ; 81(1): 344, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133273

ABSTRACT

Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.


Subject(s)
Cell Differentiation , Endothelial Cells , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Neovascularization, Physiologic , Osteogenesis , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Osteogenesis/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/genetics , Neovascularization, Physiologic/genetics , Animals , Endothelial Cells/metabolism , Endothelial Cells/cytology , Mice , Humans , Cells, Cultured , Signal Transduction , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Metabolic Reprogramming , Angiogenesis
4.
Hortic Res ; 11(7): uhae139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988621

ABSTRACT

Rapeseed is a globally significant oilseed crop cultivated to meet the increasing demand for vegetable oil. In order to enhance yield and sustainability, breeders have adopted the development of rapeseed hybrids as a common strategy. However, current hybrid production systems in rapeseed have various limitations, necessitating the development of a simpler and more efficient approach. In this study, we propose a novel method involving the targeted disruption of Defective in Anther Dehiscence1 of Brassica napus (BnDAD1), an essential gene in the jasmonic acid biosynthesis pathway, using CRISPR/Cas9 technology, to create male-sterile lines. BnDAD1 was found to be dominantly expressed in the stamen of rapeseed flower buds. Disrupting BnDAD1 led to decreased levels of α-linolenic acid and jasmonate in the double mutants, resulting in defects in anther dehiscence and pollen maturation. By crossing the double mutant male-sterile lines with male-fertile lines, a two-line system was demonstrated, enabling the production of F 1 seeds. The male-sterile trait of the bndad1 double mutant lines was maintainable by applying exogenous methyl jasmonate and subsequently self-pollinating the flowers. This breakthrough holds promising potential for harnessing heterosis in rapeseed and offers a simpler and more efficient method for producing hybrid seeds.

5.
Cell Death Dis ; 15(7): 516, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025830

ABSTRACT

Tumour metabolic reprogramming is pivotal for tumour survival and proliferation. Investigating potential molecular mechanisms within the heterogeneous and clinically aggressive triple-negative breast cancer (TNBC) subtype is essential to identifying novel therapeutic targets. Accordingly, we investigated the role of branched-chain α-keto acid dehydrogenase kinase (BCKDK) in promoting tumorigenesis in TNBC. We analysed The Cancer Genome Atlas dataset and immunohistochemically stained surgical specimens to investigate BCKDK expression and its prognostic implications in TNBC. The effects of BCKDK on tumorigenesis were assessed using cell viability, colony formation, apoptosis, and cell cycle assays, and subsequently validated in vivo. Metabolomic screening was performed via isotope tracer studies. The downstream target was confirmed using mass spectrometry and a co-immunoprecipitation experiment coupled with immunofluorescence analysis. Upstream transcription factors were also examined using chromatin immunoprecipitation and luciferase assays. BCKDK was upregulated in TNBC tumour tissues and associated with poor prognosis. BCKDK depletion led to reduced cell proliferation both in vitro and vivo. MYC-associated zinc finger protein (MAZ) was confirmed as the major transcription factor directly regulating BCKDK expression in TNBC. Mechanistically, BCKDK interacted with glucose-6-phosphate dehydrogenase (G6PD), leading to increased flux in the pentose phosphate pathway for macromolecule synthesis and detoxification of reactive oxygen species. Forced expression of G6PD rescued the growth defect in BCKDK-deficient cells. Notably, the small-molecule inhibitor of BCKDK, 3,6-dichlorobenzo(b)thiophene-2-carboxylic acid, exhibited anti-tumour effects in a patient-derived tumour xenograft model. Our findings hold significant promise for developing targeted therapies aimed at disrupting the MAZ/BCKDK/G6PD signalling pathway, offering potential advancements in treating TNBC through metabolic reprogramming.


Subject(s)
Cell Proliferation , Glucose , Glucosephosphate Dehydrogenase , Triple Negative Breast Neoplasms , Up-Regulation , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Humans , Female , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/genetics , Animals , Cell Line, Tumor , Mice , Glucose/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude
6.
Environ Sci Technol ; 58(32): 14110-14120, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39019030

ABSTRACT

While maternal exposure to high metal levels during pregnancy is an established risk factor for birth defects, the role of paternal exposure remains largely unknown. We aimed to assess the associations of prenatal paternal and maternal metal exposure and parental coexposure with birth defects in singletons. This study conducted within the Jiangsu Birth Cohort recruited couples in early pregnancy. We measured their urinary concentrations for 25 metals. A total of 1675 parent-offspring trios were included. The prevalence of any birth defects among infants by one year of age was 7.82%. Paternal-specific gravity-corrected urinary concentrations of titanium, vanadium, chromium, manganese, cobalt, nickel, copper, and selenium and maternal vanadium, chromium, nickel, copper, selenium, and antimony were associated with a 21-91% increased risk of birth defects after adjusting for covariates. These effects persisted after mutual adjustment for the spouse's exposure. Notably, when assessing the parental mixture effect by Bayesian kernel machine regression, paternal and maternal chromium exposure ranked the highest in relative importance. Parental coexposure to metal mixture showed a pronounced joint effect on the risk of overall birth defects, as well as for some specific subtypes. Our findings suggested a couple-based prevention strategy for metal exposure to reduce birth defects in offspring.


Subject(s)
Congenital Abnormalities , Maternal Exposure , Metals , Humans , Female , Pregnancy , Congenital Abnormalities/epidemiology , Prospective Studies , Male , Metals/urine , Adult , Birth Cohort , Paternal Exposure , Prenatal Exposure Delayed Effects/epidemiology
7.
Pestic Biochem Physiol ; 203: 106014, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084805

ABSTRACT

Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.


Subject(s)
Glucose Transporter Type 4 , Insecticides , Locusta migratoria , Nitriles , Ovary , Pyrethrins , RNA Interference , Animals , Pyrethrins/pharmacology , Female , Nitriles/pharmacology , Ovary/metabolism , Ovary/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Locusta migratoria/genetics , Locusta migratoria/drug effects , Locusta migratoria/metabolism , Insecticides/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Vitellogenins/metabolism , Vitellogenins/genetics , Energy Metabolism/drug effects , Fat Body/metabolism , Fat Body/drug effects , Juvenile Hormones/metabolism , Juvenile Hormones/pharmacology , Oocytes/metabolism , Oocytes/drug effects , Triglycerides/metabolism
8.
J Cancer Res Clin Oncol ; 150(6): 322, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914840

ABSTRACT

PURPOSE: Limited data are available regarding the partner and localizer of BRCA2 (PALB2) in Chinese patients with early breast cancer. This study aimed to assess the spectrum and characteristics of germline PALB2 pathogenic variants in this population. METHODS: Peripheral blood samples were collected from 1556 patients diagnosed with BRCA1/2-negative early-onset breast cancer. All coding regions and exon‒intron boundaries of the PALB2 genes were screened through next-generation sequencing. RESULTS: The prevalence of PALB2 pathogenic variants was approximately 0.77% in the cohort. Eleven PALB2 pathogenic variants were identified in twelve participants, including five frameshift mutations and six nonsense mutations. All other variants were detected once, except for PALB2 c.1056_1057del (detected twice). Two PALB2 carriers (2/12, 16.7%) have documented family history of breast cancer and/or ovarian cancer. Patients with a positive family history exhibited a threefold higher possibility of being identified as PALB2 carriers than those without a family history (2% vs. 0.69%), although the difference was not statistically significant (p = 0.178). Compared to non-carriers, PALB2 carriers has a tendency to appear in younger age (≤ 30 years) (25% vs 14.4%), human epidermal growth factor receptor-2 (HER2)-negative status (83.3% vs. 70.2%), and diagnosed with invasive micropapillary carcinoma (16.7% vs 3.1%). CONCLUSION: The prevalence of the germline PALB2 pathogenic variants was approximately 0.77% in Chinese patients with BRCA1/2-negative early-onset breast cancer. Our findings is crucial for understanding population-specific genetic risks and offering insights that can enhance genetic counseling and genetic testing strategies in this population.


Subject(s)
Age of Onset , Breast Neoplasms , Fanconi Anemia Complementation Group N Protein , Germ-Line Mutation , Humans , Female , Fanconi Anemia Complementation Group N Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/epidemiology , Adult , Middle Aged , China/epidemiology , Genetic Predisposition to Disease , Young Adult , BRCA2 Protein/genetics
9.
Biol Direct ; 19(1): 42, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831379

ABSTRACT

Triple-negative breast cancer (TNBC) is more aggressive and has a higher metastasis rate compared with other subtypes of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is now the only available systemic treatment for TNBC. However, some patients might still develop drug resistance and have poor prognosis. Therefore, novel molecular biomarkers and new treatment targets are urgently needed for patients with TNBC. To provide molecular insights into TNBC progression, we investigated the function and the underlying mechanism of Defective in cullin neddylation 1 domain containing 5 (DCUN1D5) in the regulation of TNBC. By TCGA dataset and surgical specimens with immunohistochemical (IHC) staining method, DCUN1D5 was identified to be significantly upregulated in TNBC tumor tissues and negatively associated with prognosis. A series of in vitro and in vivo experiments were performed to confirm the oncogenic role of DCUN1D5 in TNBC. Overexpression of FN1 or PI3K/AKT activator IGF-1 could restore the proliferative and invasive ability induced by DCUN1D5 knockdown and DCUN1D5 could act as a novel transcriptional target of transcription factor Yin Yang 1 (YY1). In conclusion, YY1-enhanced DCUN1D5 expression could promote TNBC progression by FN1/PI3K/AKT pathway and DCUN1D5 might be a potential prognostic biomarker and therapeutic target for TNBC treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , YY1 Transcription Factor , Animals , Female , Humans , Mice , Cell Line, Tumor , Disease Progression , Fibronectins , Gene Expression Regulation, Neoplastic , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Transcriptional Activation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics
10.
Infect Immun ; 92(7): e0013024, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38842306

ABSTRACT

Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.


Subject(s)
Coccidiosis , Eimeria , Lactobacillus plantarum , Probiotics , Animals , Coccidiosis/parasitology , Eimeria/drug effects , Probiotics/therapeutic use , Probiotics/administration & dosage , Mice , Cytokines/blood , Cytokines/metabolism , Gastrointestinal Microbiome/drug effects , Oocysts , Disease Models, Animal , Nitriles , Triazines
11.
Front Immunol ; 15: 1284579, 2024.
Article in English | MEDLINE | ID: mdl-38690279

ABSTRACT

Introduction: The programmed cell death (PCD) pathway plays an important role in restricting cancer cell survival and proliferation. However, limited studies have investigated the association between genetic variants in the 3'-untranslated region of the PCD pathway genes and breast cancer outcomes. Methods: In this study, we genotyped 28 potentially functional single nucleotide polymorphisms (SNPs) in 23 PCD pathway genes in 1,177 patients with early-stage breast cancer (EBC) from a Han Chinese population. The median follow-up period was 174 months. Results: Among all the candidate SNPs, four independent SNPs (rs4900321 and rs7150025 in ATG2B, rs6753785 in BCL2L11, and rs2213181 in c-Kit) were associated with invasive disease-free survival (iDFS), distant disease-free survival (DDFS), breast cancer-specific survival (BCSS) and overall survival (OS), respectively. Further combined genotypes of these four SNPs revealed that the survival decreased as the number of unfavorable genotypes increased (Ptrend = 1.0 × 10-6, 8.5 × 10-8, 3.6 × 10-4, and 1.3 × 10-4 for iDFS, DDFS, BCSS, and OS, respectively). Receiver operating characteristic curve analysis demonstrated that incorporating unfavorable genotypes and clinicopathological variables improved the ability to predict EBC survival (P = 0.006, 0.004, 0.029, and 0.019 for iDFS, DDFS, BCSS, and OS, respectively). Additionally, rs6753785 and rs2213181 were associated with BCL2L11 and c-Kit mRNA expression, respectively. Conclusions: Our results suggest that these four SNPs may act as novel biomarkers for EBC survival, possibly by modulating the expression of the corresponding genes.


Subject(s)
3' Untranslated Regions , Breast Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Middle Aged , Prognosis , 3' Untranslated Regions/genetics , Adult , Neoplasm Staging , Genotype , Aged , Biomarkers, Tumor/genetics , Apoptosis/genetics , Genetic Predisposition to Disease
12.
J Med Virol ; 96(5): e29678, 2024 May.
Article in English | MEDLINE | ID: mdl-38751128

ABSTRACT

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Subject(s)
Anti-Inflammatory Agents , Antiviral Agents , Disease Models, Animal , Orthomyxoviridae Infections , Oxazines , Syk Kinase , Animals , Humans , Syk Kinase/antagonists & inhibitors , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxazines/pharmacology , Oxazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Imidazoles/pharmacology , Imidazoles/therapeutic use , Lung/pathology , Lung/virology , Lung/drug effects , Lung/immunology , A549 Cells , Influenza A virus/drug effects , Mice, Inbred BALB C , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/immunology , THP-1 Cells , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
13.
J Neurooncol ; 168(2): 283-298, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557926

ABSTRACT

PURPOSE: To develop and validate a pathomics signature for predicting the outcomes of Primary Central Nervous System Lymphoma (PCNSL). METHODS: In this study, 132 whole-slide images (WSIs) of 114 patients with PCNSL were enrolled. Quantitative features of hematoxylin and eosin (H&E) stained slides were extracted using CellProfiler. A pathomics signature was established and validated. Cox regression analysis, receiver operating characteristic (ROC) curves, Calibration, decision curve analysis (DCA), and net reclassification improvement (NRI) were performed to assess the significance and performance. RESULTS: In total, 802 features were extracted using a fully automated pipeline. Six machine-learning classifiers demonstrated high accuracy in distinguishing malignant neoplasms. The pathomics signature remained a significant factor of overall survival (OS) and progression-free survival (PFS) in the training cohort (OS: HR 7.423, p < 0.001; PFS: HR 2.143, p = 0.022) and independent validation cohort (OS: HR 4.204, p = 0.017; PFS: HR 3.243, p = 0.005). A significantly lower response rate to initial treatment was found in high Path-score group (19/35, 54.29%) as compared to patients in the low Path-score group (16/70, 22.86%; p < 0.001). The DCA and NRI analyses confirmed that the nomogram showed incremental performance compared with existing models. The ROC curve demonstrated a relatively sensitive and specific profile for the nomogram (1-, 2-, and 3-year AUC = 0.862, 0.932, and 0.927, respectively). CONCLUSION: As a novel, non-invasive, and convenient approach, the newly developed pathomics signature is a powerful predictor of OS and PFS in PCNSL and might be a potential predictive indicator for therapeutic response.


Subject(s)
Central Nervous System Neoplasms , Lymphoma , Machine Learning , Humans , Female , Male , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/mortality , Middle Aged , Prognosis , Lymphoma/pathology , Lymphoma/diagnosis , Lymphoma/mortality , Aged , Adult , ROC Curve , Aged, 80 and over , Survival Rate , Young Adult , Retrospective Studies , Biomarkers, Tumor/metabolism
14.
Materials (Basel) ; 17(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38541601

ABSTRACT

It is well known that the annealing process plays a key role in tuning the properties of Fe-based amorphous soft magnetic alloys. However, the optimal annealing process for a particular amorphous alloy is often difficult to determine. Here, Fe81.4B13.2C2.8Si1.8P0.8 and Fe82.2B12.4C2.8Si1.8P0.8 amorphous alloys (denoted as Fe81.4 and Fe82.2) were prepared to systematically study the effects of the annealing temperature and time on the soft magnetic properties. The results show that the optimum annealing temperature ranges of the Fe81.4 and Fe82.2 amorphous alloys were 623 K to 653 K and 593 K to 623 K, and their coercivity (Hc) values were only 2.0-2.5 A/m and 1.3-2.7 A/m, respectively. Furthermore, a characteristic temperature Tai was obtained to guide the choosing of the annealing temperature at which the dBs/dT begins to decrease rapidly. Based on the theory of spontaneous magnetization, the relationship between Tai and the optimum annealing temperature ranges was analyzed. When the annealing temperature was higher than Tai, the effect of the internal magnetic field generated by spontaneous magnetization on the relaxation behavior was significantly reduced, and the alloys exhibited excellent soft magnetic properties. It is worth indicating that when annealed at 603 K (slightly higher than Tai), the Fe82.2 amorphous alloys exhibited excellent and stable soft magnetic properties even if annealed for a long time. The Hc of Fe82.2B12.4C2.8Si1.8P0.8 amorphous alloys was only 1.9 A/m when annealed at 603 K for 330 min. This value of Tai is expected to provide a suggestion for the proper annealing temperature of other amorphous soft magnetic alloys.

15.
Acta Trop ; 254: 107177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518835

ABSTRACT

Cryptosporidia (Cryptosporidium) is a protozoan that is widely parasitic in the intestinal cells of humans and animals, and it is also an important zoonotic parasite. However, there is no epidemiological investigation on Cryptosporidium spp. infection in infants with diarrhea of Inner Mongolia, the largest livestock region in China. To investigate the prevalence of Cryptosporidium, 2435 fresh fecal samples were collected from children with diarrhea in Inner Mongolia Maternal and Child Health Care Hospital. Molecular characterization of Cryptosporidium was carried out based on its 18S rRNA and gp60 gene sequences. The overall prevalence was 12.85% (313/2435), and in Hohhot (12.15%), it was lower than that in the surrounding city (14.87%) (P < 0.05). Moreover, Cryptosporidium was detected in different seasons and sexes. Concerning the age of children with diarrhea, the prevalence of those age groups between 0 and 1 was obviously lower than others, and there were significant differences in the prevalence at different ages (P < 0.001). Analysis of the 18S rRNA gene sequence revealed that all the positive samples were Cryptosporidium parvum, and there were 5 subtypes (IIdA23G3, IIdA24G3, IIdA24G4, IIdA25G3, and IIdA25G4). To the best of our knowledge, the above subtypes have not been reported. Our results provide a relevant basis for control and education on food safety and foodborne illness prevention.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Diarrhea , Feces , RNA, Ribosomal, 18S , Humans , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , China/epidemiology , Infant , Female , RNA, Ribosomal, 18S/genetics , Male , Diarrhea/epidemiology , Diarrhea/parasitology , Child, Preschool , Feces/parasitology , Prevalence , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Infant, Newborn , Child , DNA, Protozoan/genetics , Seasons , Sequence Analysis, DNA , Genotype , Phylogeny , Cryptosporidium parvum/genetics , Cryptosporidium parvum/isolation & purification , Cryptosporidium parvum/classification , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
16.
Clin Immunol ; 262: 110178, 2024 May.
Article in English | MEDLINE | ID: mdl-38460892

ABSTRACT

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Mice , Animals , Receptor for Advanced Glycation End Products/metabolism , Benzamides/pharmacology
17.
BMC Cancer ; 24(1): 318, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454386

ABSTRACT

BACKGROUND: The histological grade is an important factor in the prognosis of invasive breast cancer and is vital to accurately identify the histological grade and reclassify of Grade2 status in breast cancer patients. METHODS: In this study, data were collected from 556 invasive breast cancer patients, and then randomly divided into training cohort (n = 335) and validation cohort (n = 221). All patients were divided into actual low risk group (Grade1) and high risk group (Grade2/3) based on traditional histological grade, and tumor-infiltrating lymphocyte score (TILs-score) obtained from multiphoton images, and the TILs assessment method proposed by International Immuno-Oncology Biomarker Working Group (TILs-WG) were also used to differentiate between high risk group and low risk group of histological grade in patients with invasive breast cancer. Furthermore, TILs-score was used to reclassify Grade2 (G2) into G2 /Low risk and G2/High risk. The coefficients for each TILs in the training cohort were retrieved using ridge regression and TILs-score was created based on the coefficients of the three kinds of TILs. RESULTS: Statistical analysis shows that TILs-score is significantly correlated with histological grade, and is an independent predictor of histological grade (odds ratio [OR], 2.548; 95%CI, 1.648-3.941; P < 0.0001), but TILs-WG is not an independent predictive factor for grade (P > 0.05 in the univariate analysis). Moreover, the risk of G2/High risk group is higher than that of G2/Low risk group, and the survival rate of patients with G2/Low risk is similar to that of Grade1, while the survival rate of patients with G2/High risk is even worse than that of patients with G3. CONCLUSION: Our results suggest that TILs-score can be used to predict the histological grade of breast cancer and potentially to guide the therapeutic management of breast cancer patients.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis , Random Allocation
18.
Infect Drug Resist ; 17: 719-725, 2024.
Article in English | MEDLINE | ID: mdl-38410794

ABSTRACT

Objective: To evaluate the characteristics of immunocytes and cytokines associated with bloodstream infections (BSIs) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). Methods: Patients with BSIs K. pneumoniae (BSIs-Kpn) were enrolled in our hospital between 2015 and 2022. Whole blood and serum samples were collected on the first day after diagnosis. Immunocytes and cytokines profiles were assessed using multicolor flow cytometry and multiplex immunoassays, respectively. The test cytokines included interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-2, IL-4, IL-6, IL-10, and IL-17A. Results: A total of 313 patients had BSIs-Kpn, including 145 with CRKP, 43 with extended-spectrum ß-lactamases (ESBL) producing Kpn (ESBL-Kpn) and 125 with non-CRKP or non-ESBL-Kpn (susceptible Kpn, S-Kpn). Absolute number of leukomonocyte (CD45+) in CRKP, ESBL-Kpn and S-Kpn were 280.0 (138.0-523.0) cells/µL, 354.5 (150.3-737.3) cells/µL, and 637.0 (245.0-996.5) cells/µL, respectively. Compared with S-Kpn group, the absolute numbers of leukomonocyte (including T lymphocytes, B lymphocytes and natural killer cells) in patients with CRKP were significantly lower than that in patients with S-Kpn (P < 0.01). The levels of cytokines IL-2 and IL-17A were significantly higher in patients with S-Kpn than in those patients with CRKP (P<0.05). The area under receiver operating curve (AUC) of IL-2, IL-4, and IL-17A for S-Kpn was 0.576, 0.513, and 0.561, respectively, whereas that for the combination of these three cytokines with immunocytes was 0.804. Conclusion: Patients with BSIs-CRKP had lower leukomonocyte counts. High levels of IL-2 and IL-17A combined with immunocyte subpopulations showed relatively high diagnostic value for BSIs-S-Kpn from BSIs-CRKP.

19.
Front Plant Sci ; 15: 1330103, 2024.
Article in English | MEDLINE | ID: mdl-38322821

ABSTRACT

Somatic embryogenesis of Korean pine (Pinus koraiensis Sieb. Et Zucc.), an ecologically and econimically very important conifer species, was hindered by the gradually weakens and fast runaway of the embryogenicity and embryo competence of the embryogenic callus. Brassinolide (BL) has shown the enhancing capability of somatic embryo regeneration. For checking the function of BL in this issue, we applied different concentrations of BL to Korean pine callus materials exhibiting different embryogenic capacities and subsequently monitored the physiological alterations and hormone dynamics of the embryogenic callus. Our study revealed that calli with different embryogenic strengths responded differently to different concentrations of BL, but the effect after the addition of BL was very uniform. The addition of BL during the proliferation phase of embryogenic callus may help to stimulate the biological activity of callus during the proliferation process and improve the level of cell metabolism, which is accompanied by a reduction in storage substances. BL could reduce the level of endogenous auxin IAA in embryogenic callus and increase the level of abscisic acid to regulate cell division and differentiation. In addition, the MDA content in the callus was significantly decreased and the activity of antioxidant enzymes was significantly increased after the addition of BL. During the proliferation of embryogenic callus, BL was added to participate in the metabolism of phenylpropane in the cells and to increase the activity of phenylalanine ammonia-lyase and the content of lignin in the cells. We deduced that the proper doses of BL for Korean pine embryogenic callus culture were as follow: calli with low, high and decreasing embryogenicity were subcultured after the addition of 0.75 mg/L, 0.35 mg/L, 2.00 mg/L BL, respectively, during proliferation culture stage.

20.
Acta Diabetol ; 61(4): 515-524, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244081

ABSTRACT

AIMS: Diabetic osteoporosis (DOP) is the most common secondary form of osteoporosis. Diabetes mellitus affects bone metabolism; however, the underlying pathophysiological mechanisms remain unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression is upregulated in conditions characterized by vascular injury, such as atherosclerosis, hypertension, and diabetes. Additionally, Notch, HIF-1α, and VEGF are involved in angiogenesis and bone formation. Therefore, we aimed to investigate the expression of Notch, HIF-1α, and VEGF in the LOX-1 silencing state. METHODS: Rat bone H-type vascular endothelial cells (THVECs) were isolated and cultured in vitro. Cell identification was performed using immunofluorescent co-expression of CD31 and Emcn. Lentiviral silencing vector (LV-LOX-1) targeting LOX-1 was constructed using genetic recombination technology and transfected into the cells. The experimental groups included the following: NC group, HG group, LV-LOX-1 group, LV-CON group, HG + LV-LOX-1 group, HG + LV-CON group, HG + LV-LOX-1 + FLI-06 group, HG + LV-CON + FLI-06 group, HG + LV-LOX-1 + LW6 group, and HG + LV-CON + LW6 group. The levels of LOX-1, Notch, Hif-1α, and VEGF were detected using PCR and WB techniques to investigate whether the expression of LOX-1 under high glucose conditions has a regulatory effect on downstream molecules at the gene and protein levels, as well as the specific molecular mechanisms involved. RESULTS: High glucose (HG) conditions led to a significant increase in LOX-1 expression, leading to inhibition of angiogenesis, whereas silencing LOX-1 can reverse this phenomenon. Further analysis reveals that changes in LOX-1 will promote changes in Notch/HIF-1α and VEGF. Moreover, Notch mediates the activation of HIF-1α and VEGF. CONCLUSIONS: The activation of LOX-1 and the inhibition of Notch/HIF-1α/VEGF in THVECs are the main causes of DOP. These findings contribute to our understanding of the pathogenesis of DOP and offer a novel approach for preventing and treating osteoporosis.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Osteoporosis , Animals , Rats , Endothelial Cells/metabolism , Glucose , Hyperglycemia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Scavenger Receptors, Class E/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL