Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 21(6): 1286-1300, 2023 06.
Article in English | MEDLINE | ID: mdl-36952539

ABSTRACT

Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage ß-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.


Subject(s)
Hemiptera , Oryza , Animals , Glucans/metabolism , Oryza/genetics , Oryza/metabolism , Poaceae
2.
Int J Mol Sci ; 21(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785137

ABSTRACT

Membrane Attack Complex and Perforin (MACPF) proteins play crucial roles in plant development and plant responses to environmental stresses. To date, only four MACPF genes have been identified in Arabidopsis thaliana, and the functions of the MACPF gene family members in other plants, especially in important crop plants, such as the Poaceae family, remain largely unknown. In this study, we identified and analyzed 42 MACPF genes from six completely sequenced and well annotated species representing the major Poaceae clades. A phylogenetic analysis of MACPF genes resolved four groups, characterized by shared motif organizations and gene structures within each group. MACPF genes were unevenly distributed along the Poaceae chromosomes. Moreover, segmental duplications and dispersed duplication events may have played significant roles during MACPF gene family expansion and functional diversification in the Poaceae. In addition, phylogenomic synteny analysis revealed a high degree of conservation among the Poaceae MACPF genes. In particular, Group I, II, and III MACPF genes were exposed to strong purifying selection with different evolutionary rates. Temporal and spatial expression analyses suggested that Group III MACPF genes were highly expressed relative to the other groups. In addition, most MACPF genes were highly expressed in vegetative tissues and up-regulated by several biotic and abiotic stresses. Taken together, these findings provide valuable information for further functional characterization and phenotypic validation of the Poaceae MACPF gene family.


Subject(s)
Complement Membrane Attack Complex/genetics , Evolution, Molecular , Gene Expression , Genes, Plant , Perforin/genetics , Plant Proteins/genetics , Poaceae/genetics , Arabidopsis/genetics , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Gene Duplication , Gene Expression Regulation, Plant , Phylogeny , Plant Development/genetics , Segmental Duplications, Genomic , Stress, Physiological/genetics , Synteny/genetics
3.
BMC Plant Biol ; 19(1): 495, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31726995

ABSTRACT

BACKGROUND: The interaction among plants and their pollinators has been a major factor which enriched floral traits known as pollination syndromes and promoted the diversification of flowering plants. One of the bee-pollination syndromes in Faboideae with keel blossoms is the formation of a landing platform by wing and keel petals. However, the molecular mechanisms of elaborating a keel blossom remain unclear. RESULTS: By performing large scale mutagenesis, we isolated and characterized a mutant in Vigna radiata, love on wings (low), which shows developmental defects in petal asymmetry and vasculature, leading to a failure in landing platform formation. We cloned the locus through map-based cloning together with RNA-sequencing (RNA-seq) analysis. We found that LOW encoded a nucleus-localized Dof-like protein and was expressed in the flower provascular and vascular tissues. A single copy of LOW was detected in legumes, in contrast with other taxa where there seems to be at least 2 copies. Thirty one Dof proteins have been identified from the V. radiata's genome, which can be further divided into four Major Cluster of Orthologous Groups (MCOGs). We also showed that ectopic expression of LOW in Arabidopsis driven by its native promoter caused changes in petal vasculature pattern. CONCLUSIONS: To summarize, our study isolated a legume Dof-like factor LOW from V. radiata, which affects vasculature development in this species and this change can, in turn, impact petal development and overall morphology of keel blossom.


Subject(s)
Flowers/physiology , Plant Proteins/physiology , Vigna/physiology , Arabidopsis/genetics , Fabaceae/genetics , Flowers/anatomy & histology , Genes, Plant , Mutagenesis , Plant Proteins/genetics , Plants, Genetically Modified , Pollination , Transcription Factors/genetics , Transcription Factors/physiology , Vigna/anatomy & histology , Vigna/genetics
4.
Hortic Res ; 6: 23, 2019.
Article in English | MEDLINE | ID: mdl-30729013

ABSTRACT

Many studies suggest that there are distinct regulatory processes controlling compound leaf development in different clades of legumes. Loss of function of the LEAFY (LFY) orthologs results in a reduction of leaf complexity to different degrees in inverted repeat-lacking clade (IRLC) and non-IRLC species. To further understand the role of LFY orthologs and the molecular mechanism in compound leaf development in non-IRLC plants, we studied leaf development in unifoliate leaf (un) mutant, a classical mutant of mungbean (Vigna radiata L.), which showed a complete conversion of compound leaves into simple leaves. Our analysis revealed that UN encoded the mungbean LFY ortholog (VrLFY) and played a significant role in leaf development. In situ RNA hybridization results showed that STM-like KNOXI genes were expressed in compound leaf primordia in mungbean. Furthermore, increased leaflet number in heptafoliate leaflets1 (hel1) mutants was demonstrated to depend on the function of VrLFY and KNOXI genes in mungbean. Our results suggested that HEL1 is a key factor coordinating distinct processes in the control of compound leaf development in mungbean and its related non-IRLC legumes.

5.
Planta ; 249(3): 765-774, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30390139

ABSTRACT

MAIN CONCLUSION: The results provide a significant verification of functional redundancy and diversity of CUC/NAM genes in legumes. The CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) orthologs play key roles for plant organ boundary formation and organ development. Here, we performed a forward screen of the gamma irradiation mutagenesis population in mungbean and characterised a mutant, reduced rachis and fused leaflets (rrf1), which gave rise to the formation of compound leaves with reduced rachis and fused leaflets. Map-based cloning revealed that RRF1 encoded a CUC/NAM protein in mungbean. Phylogenetic analysis indicated that legume CUC1/CUC2 genes were classified as belonging to two subclades, and there are different copies of CUC1/CUC2 genes in legumes. Transcriptomic analysis showed that expression levels of a set of developmental regulators, including class I KNOTTED-LIKE HOMEOBOXI (KNOXI) gene and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene, were altered in rrf1 mutants compared to the wild-type plants. Furthermore, rrf1 genetically interacted with heptafoliate leaflets1 (hel1), a mutant displaying a seven-leaflet compound leaf, to regulate leaf development in mungbean. Our results suggest functional redundancy and diversity of two subclades of CUC1/CUC2 genes in legumes, following the duplication of an ancestral gene.


Subject(s)
Genes, Plant/physiology , Plant Leaves/growth & development , Plant Proteins/physiology , Vigna/growth & development , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Phylogeny , Plant Leaves/genetics , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vigna/genetics
6.
Plant Cell Physiol ; 59(10): 2064-2074, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29986119

ABSTRACT

An orchid flower exhibits a zygomorphic corolla with a well-differentiated labellum. In Cymbidium sinense, many varieties with peloric or pseudopeloric flowers have been bred during centuries of domestication. However, little is known about the molecular basis controlling orchid floral zygomorphy and the origin of these varieties. Here, we studied the floral morphogenesis of C. sinense and transcriptome-wide enriched differentially expressed genes among different varieties. The floral zygomorphy of C. sinense is established in the early developmental process. Out of 27 MIKCC-MADS factors, we found two homeotic MADS genes whose expression was down-regulated in peloric varieties but up-regulated in pseudopeloric varieties. CsAP3-2 expressed in the inner floral organs co-operates with a labellum-specific factor CsAGL6-2, asymmetrically promoting the differentiation of inner tepals. Interestingly, we detected exon deletions on CsAP3-2 in peloric varieties, indicating that loss of B-function results in the origin of peloria. Additional petaloid structures developed when we ectopically expressed these genes in Arabidopsis, suggesting their roles in floral morphogenesis. These findings indicate that the interplay among MADS factors would be crucial for orchid floral zygomorphy, and mutations in these factors may have maintained during artificial selection.


Subject(s)
Orchidaceae/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phylogeny , Plant Breeding , Plant Proteins/genetics
7.
Int J Mol Sci ; 18(12)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29261120

ABSTRACT

Pea (Pisum sativum L.) is a model plant that has been used in classical genetics and organ development studies. However, its large and complex genome has hindered research investigations in pea. Here, we generated transcriptomes from different tissues or organs of three pea accessions using next-generation sequencing to assess single nucleotide polymorphisms (SNPs), and further investigated petal differentially expressed genes to elucidate the mechanisms regulating floral zygomorphy. Eighteen samples were sequenced, which yielded a total of 617 million clean reads, and de novo assembly resulted in 87,137 unigenes. A total of 9044 high-quality SNPs were obtained among the three accessions, and a consensus map was constructed. We further discovered several dorsoventral asymmetrically expressed genes that were confirmed by qRT-PCR among different petals, including previously reported three CYC-like proliferating cell factor (TCP) genes. One MADS-box gene was highly expressed in dorsal petals, and several MYB factors were predominantly expressed among dorsal, lateral, and/or ventral petals, together with a ventrally expressed TCP gene. In sum, our comprehensive database complements the existing resources for comparative genetic mapping and facilitates future investigations in legume zygomorphic flower development.


Subject(s)
Flowers/genetics , Pisum sativum/genetics , Polymorphism, Single Nucleotide , Flowers/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genome, Plant , Pisum sativum/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
8.
Front Plant Sci ; 8: 1868, 2017.
Article in English | MEDLINE | ID: mdl-29163593

ABSTRACT

Bioaccumulation of arsenic (As) in rice (Oryza sativa) increases human exposure to this toxic, carcinogenic element. Recent studies identified several As transporters, but the regulation of these transporters remains unclear. Here, we show that the rice R2R3 MYB transcription factor OsARM1 (ARSENITE-RESPONSIVE MYB1) regulates As-associated transporters genes. Treatment with As(III) induced OsARM1 transcript accumulation and an OsARM1-GFP fusion localized to the nucleus. Histochemical analysis of OsARM1pro::GUS lines indicated that OsARM1 was expressed in the phloem of vascular bundles in basal and upper nodes. Knockout of OsARM1 (OsARM1-KO CRISPR/Cas9-generated mutants) improved tolerance to As(III) and overexpression of OsARM1 (OsARM1-OE lines) increased sensitivity to As(III). Measurement of As in As(III)-treated plants showed that under low As(III) conditions (2 µM), more As was transported from the roots to the shoots in OsARM1-KOs. By contrast, more As accumulated in the roots in OsARM1-OEs in response to high As(III) exposure (25 µM). In particular, the As(III) levels in node I were significantly higher in OsARM1-KOs, but significantly lower in OsARM1-OEs, compared to wild-type plants, implying that OsARM1 is important for the regulation of root-to-shoot translocation of As. Moreover, OsLsi1, OsLsi2, and OsLsi6, which encode key As transporters, were significantly downregulated in OsARM1-OEs and upregulated in OsARM1-KOs compared to wild type. Chromatin immunoprecipitation-quantitative PCR of OsARM1-OEs indicated that OsARM1 binds to the conserved MYB-binding sites in the promoters or genomic regions of OsLsi1, OsLsi2, and OsLsi6 in rice. Our findings suggest that the OsARM1 transcription factor has essential functions in regulating As uptake and root-to-shoot translocation in rice.

9.
New Phytol ; 215(4): 1582-1593, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28691160

ABSTRACT

The diverse pigmentation patterns of flower corollas probably result from pollinator-mediated selection. Previous studies demonstrated that R2R3-MYB factors may have been recruited in the regulation of corolla pigmentation. However, how R2R3-MYBs became so diverse in their regulation of different pigmentation patterns remains unclear. Here, we studied a Lamiales species, Torenia fournieri, which has elaborate zygomorphic flowers with dorsal-ventral asymmetries in corolla pigmentation. We found recent gene duplication events in CYCLOIDEA-like (CYC-like) and RADIALIS-like (RAD-like) genes, and functionally analyzed three dorsal-specific expression factors: TfCYC1, TfCYC2, and TfRAD1. We found that the CYC-RAD module coordinates petal shape and corolla pigmentation, as ectopic expression of TfCYC2 or TfRAD1 disrupted the asymmetric corolla pigmentation pattern and produced strongly dorsalized flowers. Dorsal petal identity was lost when TfCYC2 was down-regulated or when TfRAD1 was knocked out. In T. fournieri, the diversified CYC and RAD genes have evolved regulatory loops, and TfCYC2 binds directly to the regulatory regions of an R2R3-MYB factor gene, TfMYB1, which might lead to its asymmetric expression and ultimately establish the asymmetric pigmentation pattern. These findings support the existence of a regulatory module that integrates dorsal-ventral patterning and asymmetric corolla pigmentation in T. fournieri.


Subject(s)
Flowers/anatomy & histology , Lamiaceae/anatomy & histology , Lamiaceae/physiology , Pigmentation , Plant Proteins/metabolism , Anthocyanins/metabolism , Biosynthetic Pathways/genetics , Body Patterning , Cloning, Molecular , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , Lamiaceae/genetics , Models, Biological , Phenotype , Phylogeny , Plant Proteins/genetics , Protein Binding , Regulatory Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...