Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38615671

ABSTRACT

Introduction This study evaluated the phenotypic and pathology characteristics of patients undergoing kidney biopsy at a single center, while also determining the frequency and factors associated with clinical outcomes. Methods The incidence and distribution of biopsy-proven kidney diseases in 2000-2019 were surveyed. Consecutive individuals diagnosed with membranous nephropathy (MN), immunoglobulin A nephropathy (IgAN), and minimal change disease (MCD) between August 2015 and December 2019 were enrolled in the prospective two-year follow-up study. Outcomes included remission of proteinuria and kidney disease progression events. Multivariable adjusted Cox proportional hazards model was applied. Results 4,550 kidney biopsies were performed in 2000-2019, showing a noticeable increase in the proportion of MN. 426 patients were enrolled in follow-up cohort. 346 (81.2%) achieved remission of proteinuria, 39 (9.2%) suffered kidney disease progression and 51.3% of them were diagnosed with IgAN. Kidney pathological diagnosis (MN vs. MCD: hazard ratio [HR], 0.42; 95% confidence interval [95% CI], 0.31-0.57; IgAN vs. MCD: 0.58; 0.39-0.85), levels of 24-h urine protein at biopsy (1.04; 1.00-1.08) and presence of nodular mesangial sclerosis (0.70; 0.49-0.99) were significantly correlated with remission of proteinuria after adjusting for baseline variables. 24-h urine protein levels at biopsy (1.14; 1.04-1.25) and the presence of crescents (2.30; 1.06-4.95) were the independent risk factors for kidney disease progression events after adjusting for baseline variables. Conclusion The increasing frequency of MN was affirmed over the past two decades. The therapeutic status, clinical outcomes, and factors influencing these outcomes were presented in this single-center study for the three primary glomerular diseases. Number of China Clinical Trial Registry: ChiCTR2100043001.

2.
Pest Manag Sci ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629874

ABSTRACT

BACKGROUND: The pea leafminer, Liriomyza huidobrensis, is one of the most important insect pests on vegetables and ornamentals. The survival and egg-laying behavior of leafminers are markedly affected by the environment temperature. However, the mechanisms underlying the relationship between egg-laying and temperature are still largely unknown. RESULTS: Here, we find that leafminers have evolved an adaptive strategy to overcome the stress from high or low temperature by regulating oviposition-punching plasticity. We further show that this oviposition-punching plasticity is mediated by the expression of pyx in the ovipositor when subjected to disadvantageous temperature. Specifically, down-regulation of pyx expression in leafminers under low temperature stress led to a significant decrease in the swing numbers of ovipositor and puncture area of the egg spot, and consequently the lower amount of egg-laying compared to leafminers at ambient temperature. Conversely, activation of pyx expression under high temperature stress increased the swing numbers and puncture area, still resulting in a reduction of egg-laying amount. CONCLUSION: Thereby, leafminers are able to coordinate pyx channel expression level and accordingly depress the oviposition. Our study uncovers a molecular mechanism underlying the adaptive strategy in insects that can avoid disadvantageous temperature for reproducing offspring. © 2024 Society of Chemical Industry.

3.
Am J Pathol ; 194(1): 101-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37827215

ABSTRACT

The Wnt/ß-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/ß-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/ß-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating ß-catenin. Transforming growth factor-ß1 inhibited corin expression, accompanied by activation of ß-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-ß1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/ß-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/ß-catenin signaling and from fibrosis following UUO and UIRI.


Subject(s)
Kidney Diseases , Wnt Signaling Pathway , Mice , Animals , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Transforming Growth Factor beta1/metabolism , Kidney Diseases/genetics , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney/pathology , Fibrosis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
4.
Elife ; 122023 10 10.
Article in English | MEDLINE | ID: mdl-37814951

ABSTRACT

Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called 'latent inhibition'. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor gene Amtyr1 [We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption of Amtyr1 signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinct Amtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for how Amtyr1 acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.


To efficiently navigate their environment, animals must pay attention to cues associated with events important for survival while also dismissing meaningless signals. The difference between relevant and irrelevant stimuli is learned through a range of complex mechanisms that includes latent inhibition. This process allows animals to ignore irrelevant stimuli, which makes it more difficult for them to associate a cue and a reward if that cue has been unrewarded before. For example, bees will take longer to 'learn' that a certain floral odor signals a feeding opportunity if they first repeatedly encountered the smell when food was absent. Such a mechanism allows organisms to devote more attention to other stimuli which have the potential to be important for survival. The strength of latent inhibition ­ as revealed by how quickly and easily an individual can learn to associate a reward with a previously unrewarded stimulus ­ can differ between individuals. For instance, this is the case in honey bee colonies, where workers have the same mother but may come from different fathers. Such genetic variation can be beneficial for the hive, with high latent inhibition workers being better suited for paying attention to and harvesting known resources, and their low latent inhibition peers for discovering new ones. However, the underlying genetic and neural mechanisms underpinning latent inhibition variability between individuals remained unclear. To investigate this question, Latshaw et al. cross-bred bees from high and low latent inhibition genetic lines. The resulting progeny underwent behavioral tests, and the genome of low and high latent inhibition individuals was screened. These analyses revealed a candidate gene, Amtyr1, which was associated with individual variations in the learning mechanism. Further experiments showed that blocking or disrupting the production the AMTYR1 protein led to altered latent inhibition behavior as well as dampened attention-related processing in recordings from the central nervous system. Based on these findings, a model was proposed detailing how varying degrees of Amtyr1 activation can tune Hebbian plasticity, the brain mechanism that allows organisms to regulate associations between cues and events. Importantly, because of the way AMTYR1 acts in the nervous system, this modulatory role could go beyond latent inhibition, with the associated gene controlling the activity of a range of foraging-related behaviors. Genetic work in model organisms such as fruit flies would allow a more in-depth understanding of such network modulation.


Subject(s)
Smell , Tyramine , Humans , Bees , Animals , Smell/physiology , Learning/physiology , Memory/physiology , Attention
5.
Proc Natl Acad Sci U S A ; 120(37): e2306659120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669362

ABSTRACT

Chemical signals from conspecifics are essential in insect group formation and maintenance. Migratory locusts use the aggregation pheromone 4-vinylanisole (4VA), specifically released by gregarious locusts, to attract and recruit conspecific individuals, leading to the formation of large-scale swarms. However, how 4VA contributes to the transition from solitary phase to gregarious phase remains unclear. We investigated the occurrence of locust behavioral phase changes in the presence and absence of 4VA perception. The findings indicated that solitary locusts require crowding for 48 and 72 h to adopt partial and analogous gregarious behavior. However, exposure to increased concentrations of 4VA enabled solitary locusts to display behavioral changes within 24 h of crowding. Crowded solitary locusts with RNAi knockdown of Or35, the specific olfactory receptor for 4VA, failed to exhibit gregarious behaviors. Conversely, the knockdown of Or35 in gregarious locusts resulted in the appearance of solitary behavior. Additionally, a multi-individual behavioral assay system was developed to evaluate the interactions among locust individuals, and four behavioral parameters representing the inclination and conduct of social interactions were positively correlated with the process of crowding. Our data indicated that exposure to 4VA accelerated the behavioral transition from solitary phase to gregarious phase by enhancing the propensity toward proximity and body contact among conspecific individuals. These results highlight the crucial roles of 4VA in the behavioral phase transition of locusts. Furthermore, this study offers valuable insights into the mechanisms of behavioral plasticity that promote the formation of locust swarms and suggests the potential for 4VA application in locust control.


Subject(s)
Grasshoppers , Grasshoppers/physiology , Animal Communication , Behavior, Animal , Receptors, Odorant/metabolism , Styrenes/metabolism
6.
Nanotechnology ; 35(4)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37669634

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMDs), as flexible and stretchable materials, have attracted considerable attention in the field of novel flexible electronics due to their excellent mechanical, optical, and electronic properties. Among the various TMD materials, atomically thin MoS2has become the most widely used material due to its advantageous properties, such as its adjustable bandgap, excellent performance, and ease of preparation. In this work, we demonstrated the practicality of a stacked wafer-scale two-layer MoS2film obtained by transferring multiple single-layer films grown using chemical vapor deposition. The MoS2field-effect transistor cell had a top-gated device structure with a (PI) film as the substrate, which exhibited a high on/off ratio (108), large average mobility (∼8.56 cm2V-1s-1), and exceptional uniformity. Furthermore, a range of flexible integrated logic devices, including inverters, NOR gates, and NAND gates, were successfully implemented via traditional lithography. These results highlight the immense potential of TMD materials, particularly MoS2, in enabling advanced flexible electronic and optoelectronic devices, which pave the way for transformative applications in future-generation electronics.

7.
Curr Opin Insect Sci ; 59: 101098, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541387

ABSTRACT

Pheromone plasticity is widely observed in insects and enhances their survival, adaptation, and reproductive success. Aggregation pheromones, which cause notable individual aggregation and consequently impact agriculture and human life, are renowned for their special function. Here, we present a review of research progress regarding pheromone plasticity in three typical aggregative insects: locusts, bark beetles, and cockroaches. These insects are major pest species with considerable impacts on the social economy and public health. Numerous studies have demonstrated the plasticity of aggregation pheromones in different populations of these insect species. Although pheromone chemicals and compositions vary across the three groups, the plasticity of aggregation pheromones is significantly impacted by population density, location, food resources, and gut symbiotic microorganisms, indicating the complexity of pheromone plasticity regulated by multiple factors. Finally, we discuss the potential application of pheromone plasticity in basic research and pest management.

8.
Science ; 380(6644): 537-543, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37141362

ABSTRACT

Many animals engage in cannibalism to supplement their diets. Among dense populations of migratory locusts, cannibalism is prevalent. We show that under crowded conditions, locusts produce an anticannibalistic pheromone called phenylacetonitrile. Both the degree of cannibalism and the production of phenylacetonitrile are density dependent and covary. We identified the olfactory receptor that detects phenylacetonitrile and used genome editing to make this receptor nonfunctional, thereby abolishing the negative behavioral response. We also inactivated the gene underlying phenylacetonitrile production and show that locusts that lack this compound lose its protection and are more frequently exposed to intraspecific predation. Thus, we reveal an anticannibalistic feature built on a specifically produced odor. The system is very likely to be of major importance in locust population ecology, and our results might therefore provide opportunities in locust management.


Subject(s)
Acetonitriles , Cannibalism , Crowding , Grasshoppers , Pheromones , Animals , Acetonitriles/metabolism , Grasshoppers/genetics , Grasshoppers/metabolism , Pheromones/genetics , Pheromones/metabolism
9.
J Nephrol ; 36(4): 1027-1035, 2023 05.
Article in English | MEDLINE | ID: mdl-36786975

ABSTRACT

BACKGROUND: Patients with crescentic glomerulonephritis have a poor prognosis despite immunosuppressive therapy. This study investigated the clinicopathologic features, outcomes, and risk factors in Chinese patients with crescentic glomerulonephritis. METHODS: The multicenter cohort study included consecutive individuals with crescentic glomerulonephritis and a minimum follow-up of 1 year after biopsy, observed from January 2013 to December 2020. Primary outcome was the occurrence of death or end stage kidney disease (ESKD) for surviving patients. Multivariable adjusted Cox proportional hazards model was applied. RESULTS: Of 109 patients enrolled, 73 (67%) suffered primary outcomes, including 39 deaths, and 34 ESKDs among the 70 surviving patients, with a mean follow-up of 26 months. All 26 patients with over 90% glomeruli with crescents reached a primary outcome. Patients with type III crescentic glomerulonephritis had the worst prognosis for primary outcomes (HR, 95% CI for type I vs. type III: 0.29, 0.14-0.58; type II vs. type III: 0.44, 0.22-0.91) and a significantly faster rate of eGFR decline after adjusting for baseline variables. In patients with 75%-100% glomeruli with crescents, the risk of a primary outcome increased nearly fourfold (HR 3.96; 95% CI 2.17-7.23) compared with patients with 50-75% glomeruli with crescents after adjusting for baseline variables. Type of crescentic glomerulonephritis and percentage of cellular and total glomeruli with crescents were independent risk factors for early primary outcomes (within 6 months). CONCLUSIONS: This study provides new insights into crescentic glomerulonephritis, including a description of the worst outcomes occurring in patients with type III crescentic glomerulonephritis, and suggests that the quantification of the percentage of crescents may be of use for guiding therapeutic decisions, due to their role in identifying the risk of primary outcomes.


Subject(s)
Glomerulonephritis, Membranoproliferative , Glomerulonephritis , Kidney Failure, Chronic , Humans , Cohort Studies , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/etiology , Kidney Glomerulus/pathology , Acute Disease , Risk Factors , Biopsy/adverse effects , Glomerulonephritis/complications , Glomerulonephritis/diagnosis , Glomerulonephritis/epidemiology , Retrospective Studies
10.
Food Microbiol ; 108: 104096, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088112

ABSTRACT

Microbes in pit mud play key roles in fermentation cellars for Chinese strong-flavor Baijiu (SFB) production. Pit mud, however, is frequently degraded during production, compromising the quality of the end product. In this study, a bioremediation method was used to restore degraded pit mud (DPM) using indigenous microbes derived from SFB production. Metabolomics and metagenomics were used to determine the dynamics of prokaryotes during DPM restoration and their link to SFB production. The composition of flavor compounds in SFB changed (P = 0.0001) before and after restoration of DPM. Consistent with the improved sensory quality, the ethyl caproate/ethyl lactate ratio, an SFB quality measure, increased after restoration (P < 0.001). The concentrations of humus, NH4+, available phosphorus, and available potassium in DPM increased during the restoration process (P < 0.05), which is consistent with high-quality pit mud. The relative abundance of microbes that are beneficial to SFB fermentation, such as Caproiciproducens, a bacterium that produces caproic acid, increased during the restoration process. Furthermore, a total of 18 metabolic pathways were enriched (P < 0.05) from DPM before and after restoration. This includes butanoate metabolism and pyruvate metabolism, which are related to the synthesis of key flavor esters in SFB.


Subject(s)
Alcoholic Beverages , Bacteria , Alcoholic Beverages/microbiology , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Fermentation
11.
Nanoscale ; 14(34): 12358-12376, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-35972035

ABSTRACT

The use of heterojunctions for metal corrosion protection is a highly innovative and challenging task. Based on the composition and structure of tungsten oxide-based heterojunctions, Z-scheme heterojunctions were designed and synthesized by the electrostatic self-assembly method using energy band-matched g-C3N4 and WO3 materials. Applied in the field of anticorrosion, they overcame the problems of poor reduction ability and transmission inefficiency of traditional materials. The Z-scheme heterojunctions ensured unidirectional electron transfer, while the aggregation of the retained strongly reduced electrons on the surface of the iron substrates provided a strong driving force for retarding corrosion occurrence. Meanwhile, the inherent shielding properties of the two-dimensional material g-C3N4 and the confinement of chloride ions as an electroactive layer hindered the penetration of the corrosive solution. After being corroded for 72 h, the corrosion impedance of the g-C3N4/WO3 heterojunction system was improved by 640.11% compared with the epoxy resin coating. In addition, the g-C3N4/W18O49 heterojunction was synthesized by using mixed valence tungsten oxide, which overcame the problems of photogenerated electron yield and lifetime, and enhanced the anticorrosion performance compared with a single g-C3N4 phase. This research provided ideas for designing efficient and environmentally friendly heterojunction anticorrosion materials.

12.
Natl Sci Rev ; 9(6): nwab117, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35822066

ABSTRACT

Two-dimensional (2D) ferromagnetic materials have been discovered with tunable magnetism and orbital-driven nodal-line features. Controlling the 2D magnetism in exfoliated nanoflakes via electric/magnetic fields enables a boosted Curie temperature (T C) or phase transitions. One of the challenges, however, is the realization of high T C 2D magnets that are tunable, robust and suitable for large scale fabrication. Here, we report molecular-beam epitaxy growth of wafer-scale Fe3+XGeTe2 films with T C above room temperature. By controlling the Fe composition in Fe3+XGeTe2, a continuously modulated T C in a broad range of 185-320 K has been achieved. This widely tunable T C is attributed to the doped interlayer Fe that provides a 40% enhancement around the optimal composition X = 2. We further fabricated magnetic tunneling junction device arrays that exhibit clear tunneling signals. Our results show an effective and reliable approach, i.e. element doping, to producing robust and tunable ferromagnetism beyond room temperature in a large-scale 2D Fe3+XGeTe2 fashion.

13.
Adv Mater ; 34(48): e2202472, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35728050

ABSTRACT

2D semiconductors, such as molybdenum disulfide (MoS2 ), have attracted tremendous attention in constructing advanced monolithic integrated circuits (ICs) for future flexible and energy-efficient electronics. However, the development of large-scale ICs based on 2D materials is still in its early stage, mainly due to the non-uniformity of the individual devices and little investigation of device and circuit-level optimization. Herein, a 4-inch high-quality monolayer MoS2 film is successfully synthesized, which is then used to fabricate top-gated (TG) MoS2 field-effect transistors with wafer-scale uniformity. Some basic circuits such as static random access memory and ring oscillators are examined. A pass-transistor logic configuration based on pseudo-NMOS is then employed to design more complex MoS2 logic circuits, which are successfully fabricated with proper logic functions tested. These preliminary integration efforts show the promising potential of wafer-scale 2D semiconductors for application in complex ICs.

14.
Small ; 18(20): e2107650, 2022 May.
Article in English | MEDLINE | ID: mdl-35435320

ABSTRACT

Two-dimentional semiconductors have shown potential applications in multi-bridge channel field-effect transistors (MBC-FETs) and complementary field-effect transistors (C-FETs) due to their atomic thickness, stackability, and excellent electrical properties. However, the exploration of MBC-FET and C-FET based on large-scale 2D semiconductors is still lacking. Here, based on a reliable vertical stacking of wafer-scale 2D semiconductors, large-scale MBC-FETs and C-FETs using n-type MoS2 and p-type MoTe2 are successfully fabricated. The drive current of an MBC-FET with two layers of MoS2 channel (20 µm/10 µm) is up to 60 µA under 1 V bias. Compared with the single-gate MoS2 FET, the carrier mobility of MBC-FET is 2.3 times higher and the sub-threshold swing is 70% smaller. Furthermore, NAND and NOR logic circuits are also constructed based on two vertically stacked MoS2 channels. Then, C-FET arrays are fabricated by 3D integrating n-type MoS2 FET and p-type MoTe2 FET, which exhibit a voltage gain of 7 V/V when VDD  = 4 V. In addition, this C-FET device can directly convert light signals to an electrical digital signal within a single device. The demonstration of MBC-FET and C-FET based on large-scale 2D semiconductors will promote the application of 2D semiconductors in next-generation circuits.

16.
PLoS One ; 17(3): e0265009, 2022.
Article in English | MEDLINE | ID: mdl-35353837

ABSTRACT

Animals are constantly bombarded with stimuli, which presents a fundamental problem of sorting among pervasive uninformative stimuli and novel, possibly meaningful stimuli. We evaluated novelty detection behaviorally in honey bees as they position their antennae differentially in an air stream carrying familiar or novel odors. We then characterized neuronal responses to familiar and novel odors in the first synaptic integration center in the brain-the antennal lobes. We found that the neurons that exhibited stronger initial responses to the odor that was to be familiarized are the same units that later distinguish familiar and novel odors, independently of chemical identities. These units, including both tentative projection neurons and local neurons, showed a decreased response to the familiar odor but an increased response to the novel odor. Our results suggest that the antennal lobe may represent familiarity or novelty to an odor stimulus in addition to its chemical identity code. Therefore, the mechanisms for novelty detection may be present in early sensory processing, either as a result of local synaptic interaction or via feedback from higher brain centers.


Subject(s)
Odorants , Smell , Animals , Bees , Brain , Neurons/physiology , Smell/physiology
17.
ACS Appl Mater Interfaces ; 14(9): 11610-11618, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35212228

ABSTRACT

In recent years, two-dimensional (2D) semiconductors have attracted considerable attention from both academic and industrial communities. Recent research has begun transforming from constructing basic field-effect transistors (FETs) into designing functional circuits. However, device processing remains a bottleneck in circuit-level integration. In this work, a non-destructive doping strategy is proposed to modulate precisely the threshold voltage (VTH) of MoS2-FETs in a wafer scale. By inserting an Al interlayer with a varied thickness between the high-k dielectric and the Au top gate (TG), the doping could be controlled. The full oxidation of the Al interlayer generates a surplus of oxygen vacancy (Vo) in the high-k dielectric layer, which further leads to stable electron doping. The proposed strategy is then used to optimize an inverter circuit by matching the electrical properties of the load and driver transistors. Furthermore, the doping strategy is used to fabricate digital logic blocks with desired logic functions, which indicates its potential to fabricate fully integrated multistage logic circuits based on wafer-scale 2D semiconductors.

18.
Ren Fail ; 44(1): 116-125, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35172688

ABSTRACT

BACKGROUND: Although thunder god vine (Tripterygium wilfordii) has been widely used for treatment of idiopathic membranous nephropathy (IMN), the pharmacological mechanisms underlying its effects are still unclear. This study investigated potential therapeutic targets and the pharmacological mechanism of T. wilfordii for the treatment of IMN based on network pharmacology. METHODS: Active components of T. wilfordii were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. IMN-associated target genes were collected from the GeneCards, DisGeNET, and OMIM databases. VENNY 2.1 was used to identify the overlapping genes between active compounds of T. wilfordii and IMN target genes. The STRING database and Cytoscape 3.7.2 software were used to analyze interactions among overlapping genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the targets were performed using Rx64 4.0.2 software, colorspace, stringi, DOSE, clusterProfiler, and enrichplot packages. RESULTS: A total of 153 compound-related genes and 1485 IMN-related genes were obtained, and 45 core genes that overlapped between both categories were identified. The protein-protein interaction network and MCODE results indicated that the targets TP53, MAPK8, MAPK14, STAT3, IFNG, ICAM1, IL4, TGFB1, PPARG, and MMP1 play important roles in the treatment of T. wilfordii on IMN. Enrichment analysis showed that the main pathways of targets were the AGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. CONCLUSION: This study revealed potential multi-component and multi-target mechanisms of T. wilfordii for the treatment of IMN based on network pharmacological, and provided a scientific basis for further experimental studies.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glomerulonephritis, Membranous/drug therapy , Tripterygium/chemistry , Databases, Genetic , Databases, Pharmaceutical , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Humans , Network Pharmacology/methods , Protein Interaction Maps/drug effects , Signal Transduction
19.
Inorg Chem ; 60(20): 15390-15403, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34592815

ABSTRACT

The heterojunction constructed by tungsten oxide and zinc oxide materials can improve the problem of easy deactivation of electrons, which is a new and effective strategy for realizing anticorrosion. Here, the ZnO/WO2.92 heterojunction modified by oxygen vacancies (OVs) serving as the photoelectric conversion center was not consumed to provide continuous light-induced protection for steel, and the impedance value was increased by 185.35% compared to that of epoxy resin after 72 h of corrosion. The enhanced anticorrosion activity was due to OV modification leading to oxygen adsorption and electron capture, which inhibited the cathodic corrosion reaction and effectively hindered electron transport. Additionally, the localized surface plasmon resonance effect produced by OVs improved light utilization efficiency and increased electron density, which enabled numerous photoelectrons to gather on the surface of the iron substrate to reduce the corrosion rate of metals. Besides, the cascade effect of the ZnO/WO2.92 heterojunction promoted the transfer of e-/h+ to form an electric field that allowed the directional flow of electrons to inhibit the anode dissolution process. Thus, exploring the corrosion reaction involving OVs and heterojunction structures was of great significance to the development of nonsacrificial and efficient anticorrosion materials.

20.
Nat Commun ; 12(1): 5953, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34642325

ABSTRACT

Triggered by the pioneering research on graphene, the family of two-dimensional layered materials (2DLMs) has been investigated for more than a decade, and appealing functionalities have been demonstrated. However, there are still challenges inhibiting high-quality growth and circuit-level integration, and results from previous studies are still far from complying with industrial standards. Here, we overcome these challenges by utilizing machine-learning (ML) algorithms to evaluate key process parameters that impact the electrical characteristics of MoS2 top-gated field-effect transistors (FETs). The wafer-scale fabrication processes are then guided by ML combined with grid searching to co-optimize device performance, including mobility, threshold voltage and subthreshold swing. A 62-level SPICE modeling was implemented for MoS2 FETs and further used to construct functional digital, analog, and photodetection circuits. Finally, we present wafer-scale test FET arrays and a 4-bit full adder employing industry-standard design flows and processes. Taken together, these results experimentally validate the application potential of ML-assisted fabrication optimization for beyond-silicon electronic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...