Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
mBio ; : e0061624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771052

ABSTRACT

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.

2.
J Inflamm Res ; 17: 2897-2914, 2024.
Article in English | MEDLINE | ID: mdl-38764499

ABSTRACT

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.

3.
Chem Asian J ; : e202400181, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705859

ABSTRACT

In Li-ion batteries, the origin of memory effect in Al-doped Li4Ti5O12 has been revealed as the reversible Al-ion switching between 8a and 16c sites in the spinel structure, but it is still not clear about that for olivine LiFePO4, which is one of the most important cathode materials. In this work, a series of Na-doped and Ti-doped LiFePO4 are prepared in a high-temperature solid-state method, electrochemically investigated in Li-ion batteries and characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Magic-Angle-Spinning Nuclear Magnetic Resonance (MAS NMR). Compared with non-doped LiFePO4, the Ti doping can simultaneously suppress the memory effect and the Li-Fe anti-site, while they are simultaneously enhanced by the Na doping. Meanwhile, the Ti doping improves the electrochemical performance of LiFePO4, opposite to the Na doping. Accordingly, a schematic diagram of phase transition is proposed to interpret the memory effect of LiFePO4, in which the memory effect is attributed to the defect of Li-Fe anti-site.

4.
Plant Cell Environ ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557938

ABSTRACT

The GSK3/SHAGGY-like kinase plays critical roles in plant development and response to stress, but its specific function remains largely unknown in wheat (Triticum aestivum L.). In this study, we investigated the function of TaGSK3, a GSK3/SHAGGY-like kinase, in wheat development and response to stress. Our findings demonstrated that TaGSK3 mutants had significant effects on wheat seedling development and brassinosteroid (BR) signalling. Quadruple and quintuple mutants showed amplified BR signalling, promoting seedling development, while a sextuple mutant displayed severe developmental defects but still responded to exogenous BR signals, indicating redundancy and non-BR-related functions of TaGSK3. A gain-of-function mutation in TaGSK3-3D disrupted BR signalling, resulting in compact and dwarf plant architecture. Notably, this mutation conferred significant drought and heat stress resistance of wheat, and enhanced heat tolerance independent of BR signalling, unlike knock-down mutants. Further research revealed that this mutation maintains a higher relative water content by regulating stomatal-mediated water loss and maintains a lower ROS level to reduces cell damage, enabling better growth under stress. Our study provides comprehensive insights into the role of TaGSK3 in wheat development, stress response, and BR signal transduction, offering potential for modifying TaGSK3 to improve agronomic traits and enhance stress resistance in wheat.

5.
Biotechnol Bioeng ; 121(5): 1518-1531, 2024 May.
Article in English | MEDLINE | ID: mdl-38548678

ABSTRACT

Clostridium tyrobutyricum is an anaerobe known for its ability to produce short-chain fatty acids, alcohols, and esters. We aimed to develop inducible promoters for fine-tuning gene expression in C. tyrobutyricum. Synthetic inducible promoters were created by employing an Escherichia coli lac operator to regulate the thiolase promoter (PCathl) from Clostridium acetobutylicum, with the best one (LacI-Pto4s) showing a 5.86-fold dynamic range with isopropyl ß- d-thiogalactoside (IPTG) induction. A LT-Pt7 system with a dynamic range of 11.6-fold was then created by combining LacI-Pto4s with a T7 expression system composing of RNA polymerase (T7RNAP) and Pt7lac promoter. Furthermore, two inducible expression systems BgaR-PbgaLA and BgaR-PbgaLB with a dynamic range of ~40-fold were developed by optimizing a lactose-inducible expression system from Clostridium perfringens with modified 5' untranslated region (5' UTR) and ribosome-binding site (RBS). BgaR-PbgaLB was then used to regulate the expressions of a bifunctional aldehyde/alcohol dehydrogenase encoded by adhE2 and butyryl-CoA/acetate Co-A transferase encoded by cat1 in C. tyrobutyricum wild type and Δcat1::adhE2, respectively, demonstrating its efficient inducible gene regulation. The regulated cat1 expression also confirmed that the Cat1-catalyzed reaction was responsible for acetate assimilation in C. tyrobutyricum. The inducible promoters offer new tools for tuning gene expression in C. tyrobutyricum for industrial applications.


Subject(s)
Clostridium acetobutylicum , Clostridium tyrobutyricum , Clostridium tyrobutyricum/genetics , Clostridium tyrobutyricum/metabolism , Clostridium acetobutylicum/genetics , Promoter Regions, Genetic/genetics , Gene Expression , Acetates/metabolism
6.
Plant Cell ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376990

ABSTRACT

In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.

7.
Immun Inflamm Dis ; 12(1): e1158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38270315

ABSTRACT

OBJECTIVES: To identify the key differences in laboratory indicators between mono-infection and co-infection by influenza viruses and Omicron to facilitate timely adjustments in patient treatment strategies. METHODS: Prealbumin and C-reactive protein (CRP) levels were analyzed in 161 COVID-19 cases infected by SARS-CoV-2 (wild type), 299 cases infected by Omicron, 95 cases infected by influenza virus A/B (Flu A/B) and 133 co-infection cases infected with Flu A/B and Omicron. The receiver operating characteristic (ROC) curve and logistic regression equation were used to analyze the clinical predictive capacity of prealbumin and CRP in coinfected patients. RESULTS: The co-infected and wild-type infected patients had significantly different CRP and prealbumin levels compared to mono-infected patients with Omicron or Flu A/B (p < .001). The ROC curve results indicated that prealbumin was more efficient than CRP in identifying co-infection from Omicron (AUC: 0.867 vs. 0.724) or Flu A/B (AUC: 0.797 vs. 0.730), and joint prediction significantly improved the diagnostic ability to discriminate co-infection from mono-infection (AUC: 0.934 and 0.887). CONCLUSION: The findings suggest that prealbumin is a valuable indicator that can warn of co-infection and guide timely treatment decisions. Joint prediction may offer an even more effective diagnostic tool for discriminating co-infection from mono-infection.


Subject(s)
COVID-19 , Coinfection , Orthomyxoviridae , Humans , Prealbumin , Inflammation
8.
Energy Environ Sci ; 17(1): 173-182, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173560

ABSTRACT

Organic electrode materials have garnered a great deal of interest owing to their sustainability, cost-efficiency, and design flexibility metrics. Despite numerous endeavors to fine-tune their redox potential, the pool of organic positive electrode materials with a redox potential above 3 V versus Li+/Li0, and maintaining air stability in the Li-reservoir configuration remains limited. This study expands the chemical landscape of organic Li-ion positive electrode chemistries towards the 4 V-class through molecular design based on electron density depletion within the redox center via the mesomeric effect of electron-withdrawing groups (EWGs). This results in the development of novel families of conjugated triflimides and cyanamides as high-voltage electrode materials for organic lithium-ion batteries. These are found to exhibit ambient air stability and demonstrate reversible electrochemistry with redox potentials spanning the range of 3.1 V to 3.8 V (versus Li+/Li0), marking the highest reported values so far within the realm of n-type organic chemistries. Through comprehensive structural analysis and extensive electrochemical studies, we elucidate the relationship between the molecular structure and the ability to fine-tune the redox potential. These findings offer promising opportunities to customize the redox properties of organic electrodes, bridging the gap with their inorganic counterparts for application in sustainable and eco-friendly electrochemical energy storage devices.

9.
PLoS One ; 19(1): e0295346, 2024.
Article in English | MEDLINE | ID: mdl-38181024

ABSTRACT

The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.


Subject(s)
Glioma , Humans , Prognosis , Glioma/drug therapy , Glioma/genetics , Immunotherapy , Computational Biology , Biomarkers , Cell Cycle Proteins/genetics , Nuclear Proteins
10.
Angew Chem Int Ed Engl ; 63(8): e202317148, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38169131

ABSTRACT

Stabilizing electrolytes for high-voltage lithium metal batteries (LMBs) is crucial yet challenging, as they need to ensure stability against both Li anodes and high-voltage cathodes (above 4.5 V versus Li/Li+ ), addressing issues like poor cycling and thermal runaway. Herein, a novel gem-difluorinated skeleton of ionic liquid (IL) is designed and synthesized, and its non-flammable electrolytes successfully overcome aforementioned challenges. By creatively using dual salts, fluorinated ionic liquid and dimethyl carbonate as a co-solvent, the solvation structure of Li+ ions is efficiently controlled through electrostatic and weak interactions that are well unveiled and illuminated via nuclear magnetic resonance spectra. The as-prepared electrolytes exhibit high security avoiding thermal runaway and show excellent compatibility with high-voltage cathodes. Besides, the solvation structure derives a robust and stable F-rich interphase, resulting in high reversibility and Li-dendrite prevention. LiNi0.6 Co0.2 Mn0.2 O2 /Li LMBs (4.5 V) demonstrate excellent long-term stability with a high average Coulombic efficiency (CE) of at least 99.99 % and a good capacity retention of 90.4 % over 300 cycles, even can work at a higher voltage of 4.7 V. Furthermore, the ultrahigh Ni-rich LiNi0.88 Co0.09 Mn0.03 O2 /Li system also delivers excellent electrochemical performance, highlighting the significance of fluorinated IL-based electrolyte design and enhanced interphasial chemistry in improving battery performance.

11.
Dalton Trans ; 53(5): 2065-2072, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38180063

ABSTRACT

The surface structure and composition of pre-catalysts play a critical role in the surface reconstruction process toward active species during the anodic oxygen evolution reaction (OER). Surface modified methods can accelerate the OER process of alloy ribbons, but the understanding of pre-catalysts and the structure/reactivity of the reconstruction (active) species is still insufficient. Herein, we report a two-step dealloyed Ni-Fe-P alloy ribbon as a highly efficient OER electrocatalyst. By adjusting the surface-derived component, we could regulate Ni/Fe hydroxide active species on the Ni-Fe-P alloy ribbon, enhancing the OER performance. The oxidation and release of P driven by dealloying plays a key role in constructing optimal ß-NiOOH/FeOOH catalytic species on Ni-Fe-P. The optimal ß-NiOOH/FeOOH active species enables Ni-Fe-P alloy to obtain a 104 mV of reduction in overpotential (at 10 mA cm-2) and a 78-fold increase in current density (at overpotential: 300 mV) compared to undealloyed Ni-Fe-P. Our work provides valuable insights into the relationship between the surface structure/composition of alloy bulk electrocatalysts and surface-reconstructed species and a rational design of a surface treatment process.

12.
Biol Direct ; 19(1): 2, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38163902

ABSTRACT

BACKGROUND: Human Deltex 2 (DTX2) is a ubiquitin E3 ligase that functions as an oncogene and has been shown to participate in many human cancers. However, the role of DTX2 in glioma progression has remained obscure. In this study, we explore the mechanism underlying the function of DTX2 in glioma progression. METHODS: The associations between DTX2 expression and clinical characteristics of glioma were determined by bioinformatic analysis of data from The Cancer Genome Atlas and Human Protein Atlas. The expression of DTX2 in glioma tissues was detected using immunohistochemistry and western blotting. Lentivirus-mediated gene knockdown and overexpression were used to determine the effects of DTX2 and helicase-like transcription element (HLTF) on glioma cell proliferation and migration with CCK-8, cell colony formation, transwell, and wound healing assays; flow cytometry in vitro; and animal models in vivo. The interaction of the DTX2 and HLTF proteins was verified by immunoprecipitation assay and confocal microscopy. RESULTS: DTX2 was highly expressed in glioma samples, and this was correlated with worse overall survival. Silencing of DTX2 suppressed glioma cell viability, colony formation, and migration and induced cell apoptosis. In vitro ubiquitination assays confirmed that DTX2 could downregulate HLTF protein levels by increasing ubiquitination of the HLTF protein. We also observed that HLTF inhibited proliferation and migration of glioma cells. Subcutaneous xenografts with DTX2-overexpressing U87 cells showed significantly increased tumor volumes and weights. CONCLUSIONS: We have identified DTX2/HLTF as a new axis in the development of glioma that could serve as a prognostic or therapeutic marker.


Subject(s)
Glioma , Animals , Humans , Cell Line, Tumor , Glioma/genetics , Glioma/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Apoptosis , DNA-Binding Proteins/genetics , Transcription Factors/genetics
13.
Dentomaxillofac Radiol ; 53(1): 60-66, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38214943

ABSTRACT

OBJECTIVES: This study aims to evaluate the morphological features of gubernacular tract (GT) for erupting permanent mandibular canines at different ages from 5 to 9 years old with a three-dimensional (3D) measurement method. METHODS: The cone-beam CT images of 50 patients were divided into five age groups. The 3D models of the GT for mandibular canines were reconstructed and analysed. The characteristics of the GT, including length, diameter, ellipticity, tortuosity, superficial area, volume, and the angle between the canine and GT, were evaluated using a centreline fitting algorithm. RESULTS: Among the 100 GTs that were examined, the length of the GT for mandibular canines decreased between the ages of 5 and 9 years, while the diameter increased until the age of 7 years. Additionally, the ellipticity and tortuosity of the GT decreased as age advanced. The superficial area and volume exhibited a trend of initially increasing and then decreasing. The morphological variations of the GT displayed heterogeneous changes during different periods. CONCLUSIONS: The 3D measurement method effectively portrayed the morphological attributes of the GT for mandibular canines. The morphological characteristics of the GT during the eruption process exhibited significant variations. The variations in morphological changes may indicate different stages of mandibular canine eruption.


Subject(s)
Maxilla , Tooth Eruption , Humans , Child, Preschool , Child , Cone-Beam Computed Tomography/methods , Cuspid/diagnostic imaging
14.
Angew Chem Int Ed Engl ; 62(42): e202310033, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37651171

ABSTRACT

A new phosphonate-based anionic bimetallic organic framework, with the general formula of A4 -Zn-DOBDP (wherein A is Li+ or Na+ , and DOBDP6- is the 2,5-dioxido-1,4-benzenediphosphate ligand) is prepared and characterized for energy storage applications. With four alkali cations per formula unit, the A4 -Zn-DOBDP MOF is found to be the first example of non-solvated cation conducting MOF with measured conductivities of 5.4×10-8  S cm-1 and 3.4×10-8  S cm-1 for Li4 - and Na4 - phases, indicating phase and composition effects of Li+ and Na+ shuttling through the channels. Three orders of magnitude increase in ionic conductivity is further attained upon solvation with propylene carbonate, placing this system among the best MOF ionic conductors at room temperature. As positive electrode material, Li4 -Zn-DOBDP delivers a specific capacity of 140 mAh g-1 at a high average discharge potential of 3.2 V (vs. Li+ /Li) with 90 % of capacity retention over 100 cycles. The significance of this research extends from the development of a new family of electroactive phosphonate-based MOFs with inherent ionic conductivity and reversible cation storage, to providing elementary insights into the development of highly sought yet still evasive MOFs with mixed-ion and electron conduction for energy storage applications.

15.
J Stomatol Oral Maxillofac Surg ; : 101551, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37406738

ABSTRACT

OBJECTIVE: The present study aims to identify adenoid ameloblastoma (AdAM) from previously diagnosed cases of dentinogenic ghost cell tumor (DGCT), and gain insight to the possible relationship between AdAM and DGCT. METHODS: DGCT cases diagnosed between 2006 and 2022 were re-examined with focus on the AdAM-like features. RESULTS: A total of nine patients were included. Seven patients were males and two were females. The mean age was 38.0 ± 16.0 years. Five tumors occurred in the maxilla and four in the mandible, with a remarkable predilection for the posterior regions of both jaws. Microscopically, dentinoid material deposition was present in all cases. The ghost cells were absent in two cases. Rare ghost cells (<1%) were observed in three cases, and a higher proportion of ghost cells (5%-20%) were present in the remaining four cases. All cases showed prominent AdAM-like features, including duct-like structures, whorls/morules, and cribriform architecture. According to the diagnostic criteria proposed by the 2022 WHO classification, five cases without or with rare ghost cells were reclassified as AdAM. The other four cases including a higher proportion of ghost cells consisted of a mixture of DGCT and AdAM histopathologic patterns. CONCLUSION: Our results confirmed that the AdAM-like features had been largely overlooked in the diagnosis of DGCT at our institution in the past. Whilst a subset can now be more accurately classified as AdAM, some tumors showed overlapping morphological features between AdAM and DGCT, suggesting that the two may represent a spectrum of the same entity.

16.
Oncol Lett ; 26(2): 350, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37427340

ABSTRACT

Intracranial meningiomas are the most common tumors of the central nervous system (CNS). Meningiomas account for up to 36% of all brain tumors. The incidence of metastatic brain lesions has not been determined. Up to 30% of adult patients with cancer of one localization or another suffer from a secondary tumor lesion of the brain. The vast majority of meningiomas have meningeal localization; >90% are solitary. The incidence of intracranial dural metastases (IDM) is 8-9% of cases, while in 10% of cases, the brain is the only localization, and in 50% of cases the metastases are solitary. Typically, the task of distinguishing between meningioma and dural metastasis does not involve difficulties. Periodically, there is a situation when the differential diagnosis between these tumors is ambiguous, since meningiomas and solitary IDM may have similar characteristics, in particular, a cavity-less solid structure, limited diffusion of water molecules, the presence of extensive peritumoral edema, and an identical contrast pattern. The present study included 100 patients with newly diagnosed tumors of the CNS, who subsequently underwent examination and neurosurgical treatment at the Federal Center for Neurosurgery with histological verification between May 2019 and October 2022. Depending on the histological conclusion, two study groups of patients were distinguished: The first group consisted of patients diagnosed with intracranial meningiomas (n=50) and the second group of patients were diagnosed with IDM (n=50). The study was performed using a magnetic resonance imaging (MRI) General Electric Discovery W750 3T before and after contrast enhancement. The diagnostic value of this study was estimated using Receiver Operating Characteristic curve and area under the curve analysis. Based on the results of the study, it was found that the use of multiparametric MRI (mpMRI) in the differential diagnosis of intracranial meningiomas and IDM was limited by the similarity of the values of the measured diffusion coefficient. The assumption, previously put forward in the literature, regarding the presence of a statistically significant difference in the apparent diffusion coefficient values, which make it possible to differentiate tumors, was not confirmed. When analyzing perfusion data, IDM showed higher cerebral blood flow (CBF) values compared with intracranial meningiomas (P≤0.001). A threshold value of the CBF index was revealed, which was 217.9 ml/100 g/min, above which it is possible to predict IDM with a sensitivity and specificity of 80.0 and 86.0%, respectively. Diffusion-weighted images are not reliable criteria for differentiating intracranial meningiomas from IDM and should not influence the diagnosis suggested by imaging. The technique for assessing the perfusion of a meningeal lesion makes it possible to predict metastases with a sensitivity and specificity close to 80-90% and deserves attention when making a diagnosis. In the future, in order to reduce the number of false negative and false positive results, mpMRI would require additional criteria to be included in the protocol. Since IDM differs from intracranial meningiomas in the severity of neoangiogenesis and, accordingly, in greater vascular permeability, the technique for assessing vascular permeability (wash-in parameter with dynamic contrast enhancement) may serve as a refining criterion for distinguishing between dural lesions.

18.
J Endod ; 49(8): 1012-1019, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269977

ABSTRACT

INTRODUCTION: This study aimed to evaluate the influence of field of view (FOV) and voxel size on the accuracy of dynamic navigation (DN)-assisted endodontic microsurgery (EMS). METHODS: Nine sets of maxillary and mandibular 3-dimensional-printed jaw models composed of 180 teeth were divided into 9 groups with different FOVs (80 × 80 mm, 60 × 60 mm, and 40 × 40 mm) and voxel sizes (0.3 mm, 0.16 mm, and 0.08 mm). The endodontic DN system was used to plan and execute the EMS. The accuracy of the DN-EMS was represented by the platform deviation, end deviation, angular deviation, resection angle, and resection length deviation. Statistical analyses were performed using SPSS 24.0, and the significance level was set at P < .05. RESULTS: The average platform deviation, end deviation, angular deviation, resection angle, and resection length deviation were 0.69 ± 0.31 mm, 0.93 ± 0.44 mm, 3.47 ± 1.80°, 2.35 ± 1.76°, and 0.41 ± 0.29 mm, respectively. No statistically significant differences in accuracy were observed between the nine FOV and voxel size groups. CONCLUSIONS: FOV and voxel size did not appear to play an important role in the accuracy of DN-EMS. Considering the image quality and radiation dose, it is reasonable to select a limited FOV (such as 40 × 40 mm and 60 × 60 mm) to cover only the registration device, involved teeth, and periapical lesion. The voxel size should be selected according to the required resolution and cone-beam computed tomography units.


Subject(s)
Microsurgery , Spiral Cone-Beam Computed Tomography , Microsurgery/methods , Research Design , Cone-Beam Computed Tomography/methods , Maxilla
19.
Structure ; 31(8): 935-947.e4, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37329879

ABSTRACT

PaaY is a thioesterase that enables toxic metabolites to be degraded through the bacterial phenylacetic acid (PA) pathway. The Acinetobacter baumannii gene FQU82_01591 encodes PaaY, which we demonstrate to possess γ-carbonic anhydrase activity in addition to thioesterase activity. The crystal structure of AbPaaY in complex with bicarbonate reveals a homotrimer with a canonical γ-carbonic anhydrase active site. Thioesterase activity assays demonstrate a preference for lauroyl-CoA as a substrate. The AbPaaY trimer structure shows a unique domain-swapped C-termini, which increases the stability of the enzyme in vitro and decreases its susceptibility to proteolysis in vivo. The domain-swapped C-termini impact thioesterase substrate specificity and enzyme efficacy without affecting carbonic anhydrase activity. AbPaaY knockout reduced the growth of Acinetobacter in media containing PA, decreased biofilm formation, and impaired hydrogen peroxide resistance. Collectively, AbPaaY is a bifunctional enzyme that plays a key role in the metabolism, growth, and stress response mechanisms of A. baumannii.


Subject(s)
Acinetobacter baumannii , Carbonic Anhydrases , Acinetobacter baumannii/genetics , Carbonic Anhydrases/genetics , Biofilms , Anti-Bacterial Agents/chemistry
20.
Medicine (Baltimore) ; 102(23): e33935, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37335645

ABSTRACT

Gliomas have a high incidence rate in central nervous tumors. Although many breakthroughs have been made in the pathogenesis and treatment of glioma, the recurrence and metastasis rates of patients have not been improved based on the uniqueness of glioma. Glioma destroys the surrounding basement membrane (BM), leading to local infiltration, resulting in the corresponding clinical and neurological symptoms. Therefore, exploring the biological roles played by BM associated genes in glioma is particularly necessary for a comprehensive understanding of the biological processes of glioma and its treatment. Differential expression and univariate COX regression analyses were used to identify the basement membrane genes (BMGs) to be included in the model. LASSO regression was used to construct the BMG model. The Kaplan-Meier (KM) survival analysis model was used to assess the prognosis discrimination between training sets, validation sets, and clinical subgroups. Receiver-operating characteristic (ROC) analysis was used to test the prognostic efficacy of the model. Use calibration curves to verify the accuracy of nomograms. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA) were used to analyze the function and pathway enrichment among the model groups. ESTIMATE and other 7 algorithms including CIBERSORT were used to evaluate the immune microenvironment. "pRRophetic" was used to evaluate drug sensitivity. This study demonstrated that high-risk genes (LAMB4, MMP1, MMP7) promote glioma progression and negatively correlate with patient prognosis. In the tumor microenvironment (TME), high-risk genes have increased scores of macrophages, neutrophils, immune checkpoints, chemokines, and chemokine receptors. This study suggests that BMGs, especially high-risk-related genes, are potential sites for glioma therapy, a new prospect for comprehensively understanding the molecular mechanism of glioma.


Subject(s)
Glioma , Humans , Prognosis , Glioma/genetics , Nomograms , Algorithms , Basement Membrane , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...