Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254456

ABSTRACT

Bile acids (BAs) are crucial for maintaining intestinal epithelial homeostasis. However, the metabolic changes in BAs and the communication between intestinal epithelial cells (IECs) in infants after birth remain unclear. This study aims to elucidate the BA profiles of newborn piglets (NPs) and suckling piglets (SPs), and to investigate their regulatory effects on IEC proliferation and barrier integrity, as well as the potential underlying mechanisms. In this study, compared with NPs, there were significant increases in serum triglycerides, total cholesterol, glucose, and albumin levels for SPs. The total serum BA content in SPs exhibited an obvious increase. Moreover, the expression of BA synthase cytochrome P450 27A1 (CYP27A1) was increased, and the ileal BA receptor Takeda G-coupled protein receptor 5 (TGR5) and proliferation marker Ki-67 were upregulated and showed a strong positive correlation through a Spearman correlation analysis, whereas the expression of farnesoid X receptor (FXR) and occludin was markedly downregulated in SPs and also revealed a strong positive correlation. These findings indicate that the increased synthesis and metabolism of BAs may upregulate TGR5 and downregulate FXR to promote IEC proliferation and influence barrier function; this offers a fresh perspective and evidence for the role of BAs and BA receptors in regulating intestinal development in neonatal pigs.

2.
Food Funct ; 15(4): 1963-1976, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38275075

ABSTRACT

Oleanolic acid (OA) is a bioactive compound present in plant-based foods known for its beneficial impact on gastrointestinal health, specifically in alleviating diarrhea. Nonetheless, the underlying mechanisms by which OA mitigates gut epithelial damage have yet to be elucidated. In this study, OA significantly markedly ameliorated adverse effects induced by Dextran Sulfate Sodium (DSS), including weight loss and epithelial morphological damage in a murine model. Remarkably, compared to normal mice, standalone administration of OA had no discernible impact on the animals. Concurrently, we identified a significant up-regulation in the expression levels of TGR5 and BAX in the intestines of DSS-exposed mice, coupled with a decline in Bcl2 expression. Correlation analyses revealed a robust association between TGR5 and BAX expression. Oral administration of OA efficaciously counteracted these alterations. To probe the role of TGR5 in cellular apoptosis, further, a lentivirus transfection approach was utilized to induce TGR5 overexpression in intestinal epithelial cells (IPEC-J2). RNA sequencing indicated that TGR5 overexpression significantly influenced biological processes, particularly in modulating cellular activation and intercellular adhesion, in contrast to the control group cells. Functional assays substantiated that TGR5 overexpression compromised cell viability and accelerated apoptosis. Notably, OA treatment in TGR5-overexpressed cells restored cell viability, suppressed TGR5 and BAX expression, and augmented Bcl2 expression. In sum, our data suggest that OA mitigates intestinal epithelial apoptosis and bolsters cellular proliferation by downregulating TGR5. This research provides valuable insights into the prospective utility of OA as a functional food supplement or adjunctive therapeutic agent for enhancing gastrointestinal health.


Subject(s)
Oleanolic Acid , Animals , Mice , Oleanolic Acid/pharmacology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , bcl-2-Associated X Protein , Inflammation , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...