Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(3): 689-708, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33216414

ABSTRACT

Global dimming reduces incident global radiation but increases the fraction of diffuse radiation, and thus affects crop yields; however, the underlying mechanisms of such an effect have not been revealed. We hypothesized that crop source-sink imbalance of either carbon (C) or nitrogen (N) during grain filling is a key factor underlying the effect of global dimming on yields. We presented a practical framework to assess both C and N source-sink relationships, using data of biomass and N accumulation from periodical sampling conducted in field experiments for wheat and rice from 2013 to 2016. We found a fertilization effect of the increased diffuse radiation fraction under global dimming, which alleviated the negative impact of decreased global radiation on source supply and sink growth, but the source supply and sink growth were still decreased by dimming, for both C and N. In wheat, the C source supply decreased more than the C sink demand, and as a result, crops remobilized more pre-heading C reserves, in response to dimming. However, these responses were converse in rice, which presumably stemmed from the more increment in radiation use efficiency and the more limited sink size in rice than wheat. The global dimming affected source supply and sink growth of C more significantly than that of N. Therefore, yields in both crops were dependent more on the source-sink imbalance of C than that of N during grain filling. Our revealed source-sink relationships, and their differences and similarities between wheat and rice, provide a basis for designing strategies to alleviate the impact of global dimming on crop productivity.


Subject(s)
Carbon , Oryza , Edible Grain , Nitrogen , Triticum
2.
Glob Chang Biol ; 26(2): 539-556, 2020 02.
Article in English | MEDLINE | ID: mdl-31505097

ABSTRACT

Crops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An ) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5-2.0°C) in temperature by free-air CO2 enrichment (T-FACE) systems. Parameters of a biochemical C3 -photosynthesis model and of a stomatal conductance (gs ) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T-FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs -biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering.


Subject(s)
Oryza , Triticum , Acclimatization , Carbon Dioxide , Photosynthesis , Plant Leaves , Seasons , Temperature
3.
Glob Chang Biol ; 24(4): 1685-1707, 2018 04.
Article in English | MEDLINE | ID: mdl-29076597

ABSTRACT

Leaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2 , elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.


Subject(s)
Acclimatization/physiology , Carbon Dioxide/pharmacology , Oryza/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Temperature , Air , Carbon Dioxide/administration & dosage , Carbon Dioxide/chemistry , Crops, Agricultural , Nitrogen/analysis , Oryza/physiology , Photosynthesis/physiology , Plant Leaves/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...