Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 9(22): 23603-23612, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854555

ABSTRACT

Grouting serves as an effective method for mitigating geotechnical disasters in subsea tunnels. However, current theories and designs, primarily based on terrestrial tunnel contexts, seldom address the long-term effects of seawater ion erosion on reinforcement. An improved sand permeation grouting simulation test system was employed to examine the mechanical property evolution of sand layer grouting reinforcement under seawater erosion utilizing various grout types. The mechanical properties of grouting reinforcement, under varying curing conditions, were analyzed using a uniaxial compression test, permeability test, and scanning electron microscope (SEM) test. Test results indicate that seawater curing conditions initially enhance the strength and impermeability of grouting reinforcement; however, prolonged curing diminishes these mechanical benefits. The onset of this process occurs significantly sooner in cement-sodium silicate grout (28-56 days) compared to cement grout (56d to 90d). For the cement grouting reinforcement, the deformation modulus increases over time, albeit at a decreasing rate. The deformation modulus of cement-sodium silicate grouting reinforcement follows an increase-decrease-increase pattern, correlating with the volume ratio over time. The decline in mechanical properties of grouting reinforcement during the test's mid to late stages under seawater conditions results from the interplay between erosive ions, which inhibit mechanical growth and accelerate deterioration.

2.
Carbohydr Polym ; 204: 247-254, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30366538

ABSTRACT

Hydrogen bonding and mechanical refining are closely correlated. In this work, structural variations of hydrogen bonding patterns in cellulose during mechanical pulp refining, including the hydrogen bonding energy and distance as well as the content of hydrogen bonds, have been explored by using the second derivative FTIR spectra and deconvolving spectra in the OH stretching vibrational region. Results show that except for the bond distance, both the hydrogen bonding energy and the content of hydrogen bonds exhibit a significant variation at an increasing beating degree. The calculated hydrogen bonding energies for intermolecular O6H⋯O3' decrease by 12.9%, while those of intramolecular O3H⋯O5 and O2H⋯O6 vary little. Evolutions of the content of certain hydrogen bonds differ depending on the different refining stage. It is suggested that along with the role of water, hydration and swelling, internal/external fibrillation and delamination are strongly related to the structural variations of hydrogen bonding patterns in cellulose during mechanical pulp refining.

SELECTION OF CITATIONS
SEARCH DETAIL