Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015497

ABSTRACT

The objectives of this work were to address the fundamental characteristics of ansa-zirconocene catalyzed E/diene copolymerization and E/diene/1-hexene and E/diene/propylene terpolymerizations, and the quantitative relationship between diene structure and polymer chain propagation rate constant in term of quantifiable catalytic active sites. One of the most important but unknown factors in olefins ansa-zirconocene complexes is the distribution of the catalyst between sites actively participating in polymer chain formation and dormant sites. A set of ethylene/dienes copolymerizations, and ethylene/dienes/1-hexene and ethylene/dienes/1-hexene terpolymerizations catalyzed with ansa-zirconocenes/borate/triisobutylaluminium (rac-Et(Ind)2ZrCl2/[Ph3C][B(C6F5)4]/triisobutylaluminium (TIBA) were performed in toluene at 50 °C To determine the active center [C*]/[Zr] ratio variation in the copolymerization of E with different dienes and their terpolymerization with 1-hexene and propylene, each polymer propagation chain ends were quenched with 2-thiophenecarbonyl, which selectively quenches the metal-polymer bonds through acyl chloride. The ethylene, propylene, 1-hexene, and diene composition-based propagation rate constants (kpE, kpP, kp1-H, and kpdiene), thermal (melting and crystalline) properties, composition (mol% of ethylene, propylene, 1-hexene, and diene), molecular weight, and polydispersity were also studied in this work. Systematic comparisons of the proportion of catalytically [Zr]/[C*] active sites and polymerization rate constant (kp) for ansa-zirconocenes catalyzed E/diene, E/diene/1-hexene, and E/diene/propylene polymerization have not been reported before. We evaluated the addition of 1-hexene and propylene as termonomers in the copolymerization with E/diene. To make a comparison for each diene under identical conditions, we started the polymerization by introducing an 80/20 mole ratio of E/P and 0.12 mol/L of 1-hexene in the system. The catalyst behavior against different dienes, 1-hexene, and propylene is very interesting, including changes in thermal properties, cyclization of 1-hexene, and decreased incorporation of isoprene and butadiene, changes in the diffusion barriers in the system, and its effect on kp.

2.
Polymers (Basel) ; 13(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467427

ABSTRACT

The kinetics of ethylene and propylene polymerization catalyzed by homogeneous metallocene were investigated using 2-thiophenecarbonyl chloride followed by quenched-flow methods. The studied metallocene catalysts are: rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (Mt-I), rac-Et(Ind)2ZrCl2 (Mt-II) activated with ([Me2NPh][B(C6F5)4] (Borate-I), [Ph3C][B(C6F5)4] (Borate-II), and were co-catalyzed with different molar ratios of alkylaluminum such as triethylaluminium (TEA) and triisobutylaluminium (TIBA). The change in molecular weight, molecular weight distribution, microstructure and thermal properties of the synthesized polymer are discussed in detail. Interestingly, both Mt-I and Mt-II showed high activity in polyethylene with productivities between 3.17 × 106 g/molMt·h to 5.06 × 106 g/molMt·h, activities were very close to each other with 100% TIBA, but Mt-II/borate-II became more active when TEA was more than 50% in cocatalyst. Similarly, Polypropylene showed the highest activity of 11.07 106 g /molMt·h with Mt-I/Borate-I/TIBA. The effects of alkylaluminum on PE molecular weight were much more complicated; MWD curve changed from mono-modal in Mt-I/borate-I/TIBA to bimodal type when TIBA was replaced by different amounts of TEA. In PE, the active center fractions [C*]/[Zr] of Mt-I/borate were higher than that of Mt-II/borate and average chain propagation rate constant (k p) value slightly decreased with the increase of TEA/TIBA ratio, but the Mt-II/borate systems showed higher k p 1007 k p (L/mol·s). In PP, the Mt-I/borate presented much higher [C*]/[Zr] and k p value than the Mt-II. This work also extend to investigate the mechanistic features of zirconocenes catalyzed olefin polymerizations that addressed the largely unknown issues in zirconocenes in the distribution of the catalyst, between species involved in polymer chain growth and dormant state. In both metallocene systems, chain transfer with alkylaluminum is the dominant way of chain termination. To understand the mechanism of cocatalyst effects on PE Mw and (MWD), the unsaturated chain ends formed via ß-H transfer have been investigated by 1H NMR analysis.

3.
RSC Adv ; 11(50): 31817-31826, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496867

ABSTRACT

The kinetics and mechanism of ethylene and cyclic diene 5-ethylidene-2-norbornene (ENB) copolymerization catalyzed by rac-Et(Ind)2ZrCl2/[Ph3C][B(C6F5)4]/triisobutylaluminium (TIBA) were investigated using a quench-labeling procedure using 2-thiophenecarbonyl chloride (TPCC). The E/ENB copolymers were characterized by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and 1H nuclear magnetic resonance (NMR) spectroscopy and sulfur analysis. To reduce the errors of the ethylene-diene copolymerization for the kinetics study, we selected E/ENB with steric and electronic features that permit us to elucidate the metallocene catalyst behavior against dienes. A quantitative approach of catalyst speciation, stereodynamics, and micro-kinetics assisted the resolution of mechanistic problems, such as the elastomeric synthesis of ethylene propylene diene monomer rubber (EPDM), the catalyst resting state nature, and how much ion-pairing occurs during polymerization. We report here the precise observation of metal-polymer species, explanation of the dynamics of their initiation, propagation, and termination, and ethylene ENB copolymer development. An approach based on acyl chloride was used to selectively quenched transition metal-polymer bonds to evaluate the polymeric catalyst in terms of its reaction rate, R p, propagation rate content, k p, and mole fraction of active centers. It is noted that the decline in catalytic activity in the range of 1800 s, and the active center [Zr]/[*C] fraction significantly increased during the initial 1000 s and then tended towards a steady figure of 86%. It is suggested that nearly complete initiation of all olefins catalysts can be obtained after a sufficiently extended reaction. The quick increase in active sites in the first stage can be described by the immediate initiation of active sites positioned on the surfaces of catalyst particles. The initial polymerization rate, R p, is high and the crystalline properties of the E/ENB copolymer are low due to the greater incorporation of ENB in the polymer backbone, and later the polymerization reaction rates remained stable with a lower mol% of ENB. The melting temperature (T m) ranges from 108 to 127 °C, whereas the crystalline temperature ranges from 63 to 108 (J g-1). In the E-ENB copolymers, the value of k pE is much greater than that of k pENB; at 120 s, the k pE and k pENB values are 9115 and 431 L mol-1 s-1, respectively, implying smaller diffusion barriers in the early stages, which are close to the actual propagation rate constant.

SELECTION OF CITATIONS
SEARCH DETAIL
...