Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Biophotonics ; : e202400026, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453163

ABSTRACT

Macrophage polarization in neurotoxic (M1) or neuroprotective (M2) phenotypes is known to play a significant role in neuropathic pain, but its behavioral dynamics and underlying mechanism remain largely unknown. Two-photon excitation microscopy (2PEM) is a promising functional imaging tool for investigating the mechanism of cellular behavior, as using near-infrared excitation wavelengths is less subjected to light scattering. However, the higher-order photobleaching effect in 2PEM can seriously hamper its applications to long-term live-cell studies. Here, we demonstrate a GHz femtosecond (fs) 2PEM that enables hours-long live-cell imaging of macrophage behavior with reduced higher-order photobleaching effect-by leveraging the repetition rate of fs pulses according to the fluorescence lifetime of fluorophores. Using this new functional 2PEM platform, we measure the polarization characteristics of macrophages, especially the long-term cellular behavior in efferocytosis, unveiling the dynamic mechanism of neuroprotective macrophage polarization in neuropathic pain. These efforts can create new opportunities for understanding long-term cellular dynamic behavior in neuropathic pain, as well as other neurobiological problems, and thus dissecting the underlying complex pathogenesis.

2.
Sci Total Environ ; 913: 169674, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160827

ABSTRACT

Pomelo (Citrus grandis) is a highly popular and juicy member of the citrus family. However, little is known regarding the occurrence and distribution of pesticides in pomelo. In this study, we determined the levels of legacy (n = 25) and current-use pesticides (n = 2) in all parts of pomelo (i.e., epicarp, mesocarp, endocarp, pulp, and seed) and paired soil and leaf samples collected from two pomelo orchards in South China. At least one target pesticide was detected in the pomelo fruit, soil, and leaf samples, indicating that these pesticides were ubiquitous. The spatial distribution of the total concentration of pesticides in the pomelo parts was in the order of epicarp (216 ng/g) > mesocarp (9.50 ng/g) > endocarp (4.40 ng/g) > seed (3.80 ng/g) > pulp (1.10 ng/g), revealing different spatial distributions in pomelo. Principal component analysis was performed based on the concentrations of the target pesticides in the pulp and paired samples of epicarp, leaf, topsoil, and deep soil to examine the translocation pathway of the pesticides in pomelo. Close correlations were found among the target pesticides, and the pesticides in the pulp were mainly transferred from the epicarp, topsoil, or deep soil. We also explored the factors that affected such transport and found that the main translocation pathway of the non-systemic pesticide (i.e., buprofezin) into the pulp was the epicarp, whereas the systemic pesticide (i.e., pyriproxyfen) was mainly derived from the soil. The cumulative chronic dietary risks of all the pesticides resulting from pomelo consumption were much lower than the acceptable daily intake values for the general population. However, the prolonged risk of exposure to these pesticides should not be underestimated. The potential health risks posed by legacy and current-use pesticides, which are widely and frequently utilized, should be given increased attention.


Subject(s)
Citrus , Pesticide Residues , Pesticides , Humans , Pesticides/analysis , Fruit/chemistry , Soil , China , Seeds/chemistry , Pesticide Residues/analysis
3.
Nat Commun ; 14(1): 2029, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041171

ABSTRACT

Observing the dynamics of 3D soliton molecules can hold great opportunities for unveiling the mechanism of molecular complexity and other nonlinear problems. In spite of this fantastic potential, real-time visualization of their dynamics occurring on femtosecond-to-picosecond time scales is still challenging, particularly when high-spatiotemporal-resolution and long-term observation are required. In this work, we observe the real-time speckle-resolved spectral-temporal dynamics of 3D soliton molecules for a long time interval using multispeckle spectral-temporal measurement technology. Diverse real-time dynamics of 3D soliton molecules are captured for the first time, including the speckle-resolved birth, spatiotemporal interaction, and internal vibration of 3D soliton molecules. Further studies show that nonlinear spatiotemporal coupling associated with a large average-chirp gradient over the speckled mode profile plays a significant role in these dynamics. These efforts may shed new light on decomposing the complexity of 3D soliton molecules, and create an analogy between 3D soliton molecules and chemical molecules.

4.
Bull Environ Contam Toxicol ; 109(5): 900-909, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35980462

ABSTRACT

The present study assessed the residue levels of six parent neonicotinoids (p-NEOs) and four metabolites (m-NEOs) in indoor dust collected from 12 cities of China. Acetamiprid (ACE) and imidacloprid (IMI) were the predominated p-NEOs (detection rates: 98%) with the median values at 4.54 and 7.48 ng/g dry weight (dw), respectively. N-demethyl-acetamiprid (N-dm-ACE) was the most important m-NEO with the median value at 0.69 ng/g dw, while other m-NEOs were rarely detected (detection rates: < 15%). Significant correlation between ACE and thiacloprid (THD) was observed (p < 0.01), indicating their probably concurrent applications. ACE was significantly correlated to N-dm-ACE (p < 0.01), implicating the degradation of ACE in indoor environment. The estimated daily intake (EDIing) of NEOs via dust ingestion were far lower than the acceptable daily intake for NEOs. To our knowledge, this study provided a baseline nationwide investigation on the occurrence of NEOs in indoor dust of China.


Subject(s)
Air Pollution, Indoor , Insecticides , Humans , Dust/analysis , Insecticides/analysis , Neonicotinoids/analysis , Surveys and Questionnaires , No-Observed-Adverse-Effect Level , China , Air Pollution, Indoor/analysis
5.
Opt Lett ; 47(7): 1867-1870, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363756

ABSTRACT

We demonstrate a high-power 2.0-µm fiber laser system delivering femtosecond pulses with a fundamental repetition rate of >10 GHz, the highest value so far, to the best of our knowledge. The seed is a self-started fundamentally mode-locked Tm-doped fiber laser that has excellent power and spectral stabilities. The laser system can provide an average power of >600 mW, and the use of soliton-effect-based pulse compression allows the achievement of a pulse duration of 163 fs, leading to a compression factor of ∼ 13. It is anticipated that this new high-power femtosecond fiber laser with a 10-GHz-level fundamental repetition rate can serve as a promising light source for various applications, including laser surgery, micromachining, frequency comb spectroscopy, and nonlinear frequency conversion.

6.
Opt Express ; 30(8): 13095-13105, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472931

ABSTRACT

Passively mode-locked fiber lasers with GHz repetition rates have recently attracted significant attention in frontier research areas, including frequency-comb spectroscopy, coherent optical communication, photonic radar, micromachining, etc. In general, the threshold of passive mode-locking increases with the fundamental repetition rate, which is inversely proportional to the cavity length, and this sets a limit on the scalability of the fundamental repetition rate. To overcome this issue, here we propose to reduce the threshold of continuous-wave mode-locking (CWML) by precisely tapering the gain fiber, which can enhance the power density incident on the semiconductor saturable absorber mirror. Assisted by the analysis of guiding property, an experimental scheme is established for tapering standard Yb-doped fibers (125 µm cladding diameter), and tapered Yb-doped fibers with different waist diameters can be fabricated. Using a tapered Yb-doped gain fiber with waist cladding diameter of 90 µm, we are able to achieve CWML with a fundamental repetition rate of 3.3 GHz, and reduce its mode-locking threshold by 31%. More importantly, the optical spectrum of the CWML is found to be broadened with the waist diameter reduction of the gain fiber, which is beneficial for generating shorter transform-limited pulses. The efforts made in this work can provide a promising route to realize stable high-repetition-rate mode-locked fiber lasers with moderate levels of pump power.

7.
Opt Express ; 29(8): 12024-12032, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984971

ABSTRACT

Optical fibers have been widely applied to life science, such as laser delivering, fluorescence collection, biosensing, bioimaging, etc. To resolve the challenges of advanced multiphoton biophotonic applications utilizing ultrashort laser pulses, here we report a flexible diameter-oscillating fiber (DOF) with microlens endface fabricated by using Polydimethylsiloxane (PDMS) elastomers. The diameter of the DOF is designed to longitudinally vary for providing accurate dispersion management, which is important for near-infrared multiphoton biophotonics that usually involves ultrashort laser pulses. The variation range and period of the DOF's diameter can be flexibly adjusted by controlling the parameters during the fabrication, such that dispersion curves with different oscillation landscapes can be obtained. The dispersion oscillating around the zero-dispersion baseline gives rise to a minimized net dispersion as the ultrashort laser pulse passes through the DOF - reducing the temporal broadening effect and resulting in transform-limited pulsewidth. In addition, the endface of the DOF is fabricated with a microlens, which is especially useful for laser scanning/focusing and fluorescence excitation. It is anticipated that this new biocompatible DOF is of great interest for biophotonic applications, particularly multiphoton microscopy deep inside biological tissues.


Subject(s)
Lasers , Microscopy, Fluorescence, Multiphoton/instrumentation , Optical Fibers , Dimethylpolysiloxanes/chemistry , Equipment Design
8.
Opt Express ; 29(8): 12049-12065, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984973

ABSTRACT

The existence of vector solitons that arise from the birefringence nature of optical fibers has been increasingly of interest for the stability of mode-locked fiber lasers, particularly for those operating in the high-fundamental-repetition-rate regime, where a large amount of fiber birefringence is required to restore the phase relation between the orthogonally polarized vector solitons, resulting in stable mode-locking free of polarization rotation. These vector solitons can exhibit diverse time-varying polarization dynamics, which prevent industrial and scientific applications requiring stable and uniform pulse trains at high fundamental repetition rates. This pressing issue, however, has so far been rarely studied. To this end, here we theoretically and experimentally dissect the formation of vector solitons in a GHz-repetition-rate fiber laser and investigate effective methods for suppressing roundtrip-to-roundtrip polarization dynamics. Our numerical model can predict both dynamic and stable regimes of high-repetition-rate mode-locking by varying the amount of fiber birefringence, resulting in the polarization rotation vector soliton (PRVS) and linearly polarized soliton (LPS), respectively. These dynamic behaviors are further studied by using an analytical approach. Interestingly, our theoretical results indicate a cavity-induced locking effect, which can be a complementary soliton trapping mechanism for the co-propagating solitons. Finally, these theoretical predications are experimentally verified, and we obtain both PRVS and LPS by adjusting the intracavity fiber birefringence.

11.
Nat Commun ; 12(1): 67, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397989

ABSTRACT

The dynamics of three-dimensional (3D) dissipative solitons originated from spatiotemporal interactions share many common characteristics with other multi-dimensional phenomena. Unveiling the dynamics of 3D solitons thus permits new routes for tackling multidisciplinary nonlinear problems and exploiting their instabilities. However, this remains an open challenge, as they are multi-dimensional, stochastic and non-repeatable. Here, we report the real-time speckle-resolved spectral-temporal dynamics of a 3D soliton laser using a single-shot multispeckle spectral-temporal technology that leverages optical time division multiplexing and photonic time stretch. This technology enables the simultaneous observation on multiple speckle grains to provide long-lasting evolutionary dynamics on the planes of cavity time (t) - roundtrip and spectrum (λ) - roundtrip. Various non-repeatable speckly-diverse spectral-temporal dynamics are discovered in both the early and established stages of the 3D soliton formation.

12.
Opt Express ; 28(9): 13414-13422, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403816

ABSTRACT

In this work, we report a >100 W femtosecond (fs) burst mode all-fiber laser system at 1.0 µm that operates at an intra-burst repetition rate of up to 1.2 GHz. This fiber laser system provides the highest output power that has been reported so far for GHz fs fiber lasers, to the best of our knowledge. In addition to the superior output power, this fiber laser system also shows a promising overall figure of merit, specifically in terms of pulse width (473 fs), long-term reliability (<0.67% power fluctuation) and system compactness (all-fiber configuration). We anticipate that this all-fiber laser system can be a promising ultrafast laser source for these applications requiring fs pulses with both high average power and high repetition rate, such as micromachining, bioimaging and frequency metrology.

13.
Environ Sci Technol ; 54(13): 8210-8220, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32388996

ABSTRACT

Neonicotinoids (NEOs) are insecticides that are widely used around the world. Following exposure, NEOs get metabolized in human bodies. The biomarkers to assess human NEO exposure are not well described because of the lack of information on the metabolites of NEOs (m-NEOs). In this study, five m-NEOs including N-desmethyl-acetamiprid (N-dm-ACE), 5-hydroxy-imidacloprid (5-OH-IMI), olefin-imidacloprid (Of-IMI), 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine (DIN-G), and 1-methyl-3-(tetrahydro-3-furylmethyl) (DIN-U) were measured in 275 urine samples collected from 10 cities in China. All of the m-NEOs were frequently detected in urine samples with the median concentrations ranging from 0.42 (DIN-G) to 1.02 (5-OH-IMI) ng/mL. The urinary concentrations of N-dm-ACE and 5-OH-IMI measured in China were higher than those reported from Japan and the USA. In comparison to the parent NEO (i.e., acetamiprid, ACE; imidacloprid, IMI; and dinotefuran, DIN) concentrations reported in the same set of samples by our research group, the median ratios of m-NEO to the corresponding parent NEO (m-NEO/NEO) ranged from 4.95 (DIN-G/DIN) to 37.7 (N-dm-ACE/ACE), indicating that NEOs are mainly present as metabolites rather than the parent forms. Furthermore, the ratio of Σm-NEOs/ΣNEOs was significantly (p < 0.01) higher in females than in males, suggesting that NEOs are more readily metabolized in females or females are more highly exposed to m-NEOs. To our knowledge, this is the first study to measure Of-IMI, DIN-G, and DIN-U levels in urine samples from China. We recommend biomonitoring studies to include N-dm-ACE, 5-OH-IMI, and DIN-U (and DIN-G) for clear understanding of human exposure to ACE, IMI, and DIN, respectively.


Subject(s)
Insecticides , Biological Monitoring , China , Female , Humans , Insecticides/analysis , Japan , Male , Neonicotinoids , Nitro Compounds
14.
Sci Total Environ ; 726: 138503, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32320878

ABSTRACT

Benzophenone (BP)-type ultraviolet (UV) filters are widely used in personal care products. Some of them have been identified as endocrine disrupting chemicals. However, little is known about the occurrence of BP-type UV filters in paired maternal-fetal samples. In this study, we investigated the occurrence of eight BP-type UV filters in paired maternal-fetal samples collected from Southern China. Among target analytes, only benzophenone-3 (BP-3) was frequently (detection rate > 80%) detected in maternal-fetal samples, i.e., maternal serum (MS), cord serum (CS), maternal urine (MU) and amniotic fluid (AF). BP-3 was the dominant compound in MS (median: 0.14 ng/mL), CS (0.16) and AF (0.12); whereas MU was dominated by benzophenone-1 (BP-1, 2.85). The median CS/MS ratios (i.e., placental transfer rates) of 4-hydroxy benzophenone (4-OH-BP, 2.35), BP-1 (1.52), benzophenone-4 (BP-4, 1.06), and BP-3 (1.03) were higher than 1.0, suggesting that exposure levels of these chemicals in fetuses were greater than those in mothers. Significant positive correlations (r = 0.667, p < 0.001) of BP-3 concentrations were found between MS and CS, which suggested that MS could be an indicator of fetal exposure to BP-3. Furthermore, the CS/MS ratios of 4-OH-BP, BP-1, BP-3, and benzophenone-8 (BP-8) increased with decreasing molecular weight or log Kow. Passive diffusion may play an important role in placental transfer of these BP type UV filters. The MU/MSBP-3 ratio (5.86) was relatively higher than that of MU/MSBP-1 (0.89), which indicated that BP-3 excretes rapidly in urine. The present study documents the occurrence of eight BP-type UV filters in matched MS, CS, MU and AF samples for the first time in China.


Subject(s)
Endocrine Disruptors , Sunscreening Agents , Benzophenones , China , Female , Fetus , Humans , Pregnancy
15.
Environ Pollut ; 263(Pt A): 114461, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32251969

ABSTRACT

With the phase out of perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), the composition profiles of poly- and perfluoroalkyl substance (PFAS) in our living environment are unclear. In this study, 25 PFASs were analyzed in indoor dust samples collected from urban, industrial, and e-waste dismantling areas in China. PFOS alternatives, including 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) (median: 5.52 ng/g) and 8:2 chlorinated polyfluorinated ether sulfonate (8:2 Cl-PFESA) (1.81 ng/g), were frequently detected. By contrast, PFOA alternatives, such as hexafluoropropylene oxide dimer acid (HPFO-DA, Gen-X) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA), were not found in any of the dust samples. As expected, all legacy PFASs were widely observed in indoor dust, and 4 PFAS precursors were also detected. Dust concentrations of 6:2 Cl-PFESA were strongly correlated (p < 0.05) with those of 8:2 Cl-PFESA regardless of sampling sites. 6:2 Cl-PFESA was also significantly associated with that of PFOS in industrial and e-waste (p < 0.01) areas. Association analysis suggested that the sources of PFOS and its alternatives are common or related. Although ∑Cl-PFESA concentration was lower than that of PFOS (17.4 ng/g), industrial areas had the highest 6:2 Cl-PFESA/PFOS ratio (0.63). Composition profiles of PFASs in the industrial area showed the forefront of fluorine change. Thus, the present findings suggested that Cl-PFESAs are widely used as PFOS alternatives in China, and high levels of human Cl-PFESA exposure are expected in the future. Short-chain PFASs (C4-C7) were the predominant PFASs found in dust samples, contributing to over 40% of ∑total PFASs. Furthermore, perfluoro-1-butanesulfonate/PFOS and perfluoro-n-butanoic acid (PFBA)/PFOA ratios were 2.8 and 0.72, respectively. These findings suggested shifting to the short-chain PFASs in the environment in China. To the authors knowledge this is the first study to document the levels of 6:2 Cl-PFESA, 8:2 Cl-PFESA in indoor dust.


Subject(s)
Alkanesulfonic Acids , Electronic Waste , Fluorocarbons , China , Dust , Ethers , Humans
16.
Opt Lett ; 44(24): 6001-6004, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-32628205

ABSTRACT

High-power femtosecond (fs)-pulsed all-fiber lasers operating at high repetition rates are highly demanded for various applications, including laser micromachining, nonlinear optical imaging, high-speed optical sampling, arbitrary waveform generation, and frequency metrology. However, their performance has long been limited by either the average power, repetition rate, pulse width, or compactness, which prevent practical applications. In this work, we report a high repetition rate fs-pulsed all-fiber laser at 2.0 µm that so far provides the best performance metrics, to the best of our knowledge, i.e., ∼2GHz fundamental repetition rate, 126 fs pulse width, ∼8W average power, and all-fiber configuration. We anticipate that this laser can be a promising fs-pulsed fiber laser source for applications requiring a GHz repetition rate.

17.
Opt Express ; 26(13): 16411-16421, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119473

ABSTRACT

Multi-gigahertz fundamental repetition rate, tunable repetition rate and wavelength, ultrafast fiber lasers at wavelengths of 1.0, 1.5, and 2.0 µm are experimentally demonstrated and summarized. At the wavelength of 1.0 µm, the laser wavelength is tuned in the range of 1040.1-1042.9 nm and the repetition rate is shifted by 226 kHz in a 3-cm-long all-fiber laser by controlling the temperature of the resonator. Compared with a previous work where the maximum average power was 0.8 mW, the power in this study is significantly improved to 57 mW under a launched pump power of 213 mW, thus achieving an optical-to-optical efficiency of 27%. For comparison, a similar temperature-tuning technique is implemented in a Tm3+-doped ultrafast oscillator but, as expected, it results in a broader tunable range of 14.1 nm (1974.1-1988.2 nm) in wavelength as compared with the value of 1.8 nm for the wavelength of 1.0 µm. The repetition rate in the process is shifted by 294 kHz. For the high-frequency range from 100 kHz to 10 MHz, the value of integrated timing jitter gradually increases with an increase in temperature. Finally, to the best of our knowledge, for the first time, a new method for tuning wavelength and repetition rate is proposed and demonstrated for a femtosecond fiber laser at the wavelength of 1.5 µm. Through fine rotation of the alignment angle between the Er/Yb:glass fiber and a semiconductor saturable absorption mirror, the peak wavelength can be tuned in the range of 1591.4-1586.1 nm and the repetition rate is shifted by 60 kHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...