Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; : 109648, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777253

ABSTRACT

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.

2.
Cell Mol Biol Lett ; 29(1): 60, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671354

ABSTRACT

Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.


Subject(s)
Autophagy , Drug Resistance, Neoplasm , Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Autophagy/genetics , Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Signal Transduction/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
3.
Int J Biol Macromol ; 261(Pt 2): 129840, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302014

ABSTRACT

Double-stranded RNA (dsRNA) can specifically inhibit gene expression by RNA interference and has important application potential in animal disease control. White spot syndrome virus (WSSV) is one of the most harmful pathogens in shrimp aquaculture, causing huge economic losses every year. In this study, we investigated the function of the WSSV-encoded wsv108 protein. We demonstrated that wsv108 could promote apoptosis by interacting with heat shock protein 70 (HSP70) and enhancing the expression of multiple apoptosis-related genes. Silencing of wsv108 gene by injection with specific dsRNA prepared by in vitro transcription significantly increased the survival rate of WSSV-infected shrimp and reduced the viral load in tissues, suggesting that wsv108 is important for WSSV pathogenicity. Based on this, we expressed the wsv108 specific dsRNA in engineered Escherichia coli. Oral feeding of this bacterium could inhibit the expression of wsv108, increase the survival rate of WSSV-infected shrimp, and decrease the viral load of WSSV in tissues. Therefore, this study developed a new method for treatment of WSSV disease by oral administration of bacterially expressed dsRNA against a novel therapeutic target molecule, which could be a potential candidate strategy for WSSV control in aquaculture.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , RNA, Double-Stranded/genetics , RNA Interference , Penaeidae/genetics
4.
Dev Comp Immunol ; 153: 105127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160871

ABSTRACT

Hypoxia-inducible factors -1 (HIF-1) is a crucial transcription factor that regulates the expression of glycolytic genes. Our previous study proved that the Mud crab dicistrovirus-1 (MCDV-1) can induce aerobic glycolysis that favors viral replication in mud crab Scylla paramamosain. However, the role of HIF-1 on key glycolytic genes during the MCDV-1 infection has not been examined. In this study, the intricate interplay between HIF-1 and the key glycolysis enzyme, lactate dehydrogenase (LDH), was investigated after MCDV-1 infection. The expression of LDH was significant increased after MCDV-1 infection. Additionally, the expression of HIF-1α was upregulated following MCDV-1 infection, potentially attributed to the downregulation of prolyl hydroxylase domains 2 expression. Subsequent examination of the SpLDH promoter identified the presence of hypoxia response elements (HREs), serving as binding sites for HIF-1α. Intriguingly, experimental evidence demonstrated that SpHIF-1α actively promotes SpLDH transcription through these HREs. To further elucidate the functional significance of SpHIF-1α, targeted silencing was employed, resulting in a substantial reduction in SpLDH expression, activity, and lactate concentrations in MCDV-1-infected mud crabs. Notably, SpHIF-1α-silenced mud crabs exhibited higher survival rates and lower viral loads in hepatopancreas tissues following MCDV-1 infection. These results highlight the critical role of SpHIF-1α in MCDV-1 pathogenesis by regulating LDH gene dynamics, providing valuable insights into the molecular mechanisms underlying the virus-host interaction.


Subject(s)
Brachyura , Dicistroviridae , Animals , Brachyura/metabolism , Lactic Acid/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Hypoxia
5.
Fish Shellfish Immunol ; 143: 109235, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37989447

ABSTRACT

Activating transcription factor 6 (ATF6) is critical for regulation of unfolded protein response (UPR), which is involved in the endoplasmic reticulum (ER) proteostasis maintenance and cellular redox regulation. In the present study, a ATF6 gene from the mud crab (designated as Sp-ATF6) has been cloned and identified. The open reading frame of Sp-ATF6 was 1917 bp, encoding a protein of 638 amino acids. The deduced amino acid sequences of Sp-ATF6 contained a typical basic leucine zipper (BZIP domain). Sp-ATF6 was widely expressed in all tested tissues, with the highest expression levels in the hemocytes and the lowest in the muscle. Subcellular localization showed that Sp-ATF6 was expressed in both nucleus and cytoplasm of S2 cells. The expression level of Sp-ATF6 was induced by hydrogen peroxide and V. parahaemolyticus challenge, indicating that the ATF6 pathway was activated in response to ER stress. In order to know more about the regulation mechanism of the Sp-ATF6, RNA interference experiment was investigated. Knocking down Sp-ATF6 in vivo can decrease the expression of antioxidant-related genes (CAT and SOD) and heat shock proteins (HSP90 and HSP70) after V. parahaemolyticus infection. All these results suggested that Sp-ATF6 played a crucial role in the defense against environmental stress and pathogen infection in crustaceans.


Subject(s)
Brachyura , Animals , Brachyura/microbiology , Hydrogen Peroxide , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Phylogeny , Amino Acid Sequence , Bacteria/metabolism , Arthropod Proteins/chemistry , Immunity, Innate/genetics
6.
Fish Shellfish Immunol ; 141: 109078, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37716494

ABSTRACT

Heat shock proteins play an important role in host defense, and modulate immune responses against pathogen infection. In this study, a novel HSC70 from the mud crab (designated as SpHSC70) was cloned and characterized. The full length of SpHSC70 contained a 58 bp 5'untranslated region (UTR), an open reading frame (ORF) of 2,046 bp and a 3'UTR of 341 bp. The SpHSC70 protein included the conserved DnaK motif. The mRNA of SpHSC70 was highly expressed in the hemocytes, heart and hepatopancreas, and lowly expressed in the intestine. The subcellular localization results indicated that SpHSC70 was localized in both the cytoplasm and the nucleus. Moreover, SpHSC70 was significantly responsive to bacterial challenge. RNA interference experiment was designed to investigate the roles of SpHSC70 in response to bacterial challenge. V. parahaemolyticus infection induced the expression levels of SpPO, SpHSP70, SpSOD and SpCAT. Knocking down SpHSC70 in vivo can decrease the expression of these genes after V. parahaemolyticus infection. These results suggested that SpHSC70 could play a vital role in defense against V. parahaemolyticus infection via activating the immune response and antioxidant defense signaling pathways in the mud crab.


Subject(s)
Brachyura , Vibrio Infections , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Vibrio Infections/microbiology , RNA Interference , Bacteria/metabolism , Arthropod Proteins , Phylogeny
7.
Fish Shellfish Immunol ; 139: 108917, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37355218

ABSTRACT

The Hippo-Yki signaling pathway plays a crucial role in numerous biological processes. Previous studies have demonstrated the significance of signal transduction components of the Hippo pathway in the immune response of shrimp. In this study, the downstream transcription factor of Hippo signaling, Scalloped, was analyzed in the context of Vibrio parahaemolyticus infection in Pacific white shrimp, Penaeus vannamei. Upon bacterial and fungal infections, the expression of Scalloped was upregulated in hemocytes. Scalloped was found to localize in the nucleus and interact with the Hippo pathway downstream transcriptional co-activator Yki. With the assistance of Yki, Scalloped activated the promoter of Cactus, a cytoplasmic inhibitor of the NF-κB pathway, leading to the inhibition of the nuclear translocation of the NF-κB family member Dorsal in shrimp. By inhibiting the Dorsal pathway, Scalloped reduced the expression of immune functional proteins and negatively regulated the immune response against bacterial infection in shrimp. RNAi-mediated silencing of Scalloped significantly enhanced the survival rate of V. parahaemolyticus-infected shrimp and reduced the bacterial load in tissues. These findings demonstrate the potential of Scalloped as a therapeutic target for vibriosis in crustaceans and contribute to our understanding of the shrimp's antibacterial defense and the functional roles of Hippo signaling in animal immunity.


Subject(s)
Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , NF-kappa B/metabolism , Hippo Signaling Pathway , Vibrio parahaemolyticus/physiology , Vibrio Infections/veterinary , Immunity, Innate/genetics
8.
Fish Shellfish Immunol ; 136: 108729, 2023 May.
Article in English | MEDLINE | ID: mdl-37011739

ABSTRACT

The transcription factor Nrf2 plays vital roles in detoxification and antioxidant enzymes against oxidative stress. However, the function of Nrf2 in crustaceans is not well studied. In this study, a novel Nrf2 gene from the mud crab (Sp-Nrf2) was identified. It was encoded 245 amino acids. Sp-Nrf2 expression was ubiquitously expressed in all tested tissues, with the highest expression level in the gill. Sp-Nrf2 protein was mainly located in the nucleus. The expression levels of Sp-Nrf2, and antioxidant-related genes (HO-1 and NQO-1) were induced after Vibrio parahaemolyticus infection, indicating that Nrf2 signaling pathway was involved in the responses to bacterial infection. Over-expression of Sp-Nrf2 could improve cell viability after H2O2 exposure, indicating that Sp-Nrf2 might relieve oxidative stress. Silencing of Sp-Nrf2 in vivo decreased HO-1 and NQO-1 expression. Moreover, knocking down Sp-Nrf2 in vivo can increase malondialdehyde content and the mortality of mud crabs after V. parahaemolyticus infection. Our results indicated that Nrf2 signaling pathway played a significant role in immune response against bacterial infection.


Subject(s)
Bacterial Infections , Brachyura , Intestinal Diseases , Vibrio Infections , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Vibrio Infections/microbiology , Signal Transduction , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Phylogeny , Immunity, Innate
9.
Article in English | MEDLINE | ID: mdl-37086960

ABSTRACT

Prolyl hydroxylase 2 (PHD2) is the key oxygen sensor that regulates the stability of the hypoxia-inducible factor -1α (HIF-1α). In this study, a novel PHD2 gene from the mud crab Scylla paramamosain, named SpPHD2, was cloned and identified. The full-length transcript of SpPHD2 was found to be 1926 bp, consisting of a 333 bp 5' untranslated region, a 1239 bp open reading frame, and a 354 bp 3' untranslated region. The putative SpPHD2 protein contained a Prolyl 4-hydroxylase alpha subunit homologues (P4Hc) domain in the C-terminal and a Myeloid translocation protein 8, Nervy, and DEAF-1 (MYND)-type zinc finger (zf-MYND) domain in the N-terminal. The mRNA expression of SpPHD2 was found to be widely distributed across all examined tissues. Additionally, the subcellular localization results indicated that the SpPHD2 protein was mainly localized in the cytoplasm. The in vivo silencing of SpPHD2 resulted in the upregulation of SpHIF-1α and a series of downstream genes involved in the HIF-1 pathway, while SpPHD2 overexpression in vitro dose-dependently reduced SpHIF-1α transcriptional activity, indicating that SpPHD2 plays a crucial role in SpHIF-1α regulation. Interestingly, the expression of SpPHD2 increased under hypoxic conditions, which was further inhibited by SpHIF-1α interference. Moreover, four hypoxia response elements were identified in the SpPHD2 promoter, suggesting that a feedback loop exists between SpPHD2 and SpHIF-1α under hypoxia. Taken together, these results provided new insights into the regulation of SpPHD2 in response to hypoxia in S. paramamosain.


Subject(s)
Brachyura , Prolyl Hydroxylases , Animals , Brachyura/genetics , Brachyura/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism
10.
Dev Comp Immunol ; 143: 104676, 2023 06.
Article in English | MEDLINE | ID: mdl-36889371

ABSTRACT

Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that plays a key role in antioxidant defense. In this study, a novel Grx2 gene (SpGrx2) was identified from the mud crab Scylla paramamosain, which consists of a 196 bp 5' untranslated region, a 357 bp open reading frame, and a 964 bp 3' untranslated region. The putative SpGrx2 protein has a typical single Grx domain with the active center sequence C-P-Y-C. The expression analysis revealed that the SpGrx2 mRNA was most abundant in the gill, followed by the stomach and hemocytes. Both mud crab dicistrovirus-1 and Vibrioparahaemolyticus infection as well as hypoxia could differentially induce the expression of SpGrx2. Furthermore, silencing SpGrx2 in vivo affected the expression of a series of antioxidant-related genes after hypoxia treatment. Additionally, SpGrx2 overexpression significantly increased the total antioxidant capacity of Drosophila Schneider 2 cells after hypoxia, resulting in a reduction of reactive oxygen species and malondialdehyde content. The subcellular localization results indicated that SpGrx2 was localized in both the cytoplasm and the nucleus of Drosophila Schneider 2 cells. These results indicate that SpGrx2 plays a crucial role as an antioxidant enzyme in the defense system of mud crabs against hypoxia and pathogen challenge.


Subject(s)
Arthropod Proteins , Brachyura , Glutaredoxins , Animals , Brachyura/immunology , Brachyura/microbiology , Glutaredoxins/chemistry , Glutaredoxins/genetics , Glutaredoxins/metabolism , Arthropod Proteins/metabolism , Drosophila , Organ Specificity , Base Sequence , Amino Acid Sequence , Oxygen/metabolism , Transcriptome , Oxidoreductases/metabolism , Cloning, Molecular , Cell Line
11.
Chemosphere ; 326: 138464, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965531

ABSTRACT

Cadmium is one of hazardous pollutants that has a great threat to aquatic organisms and ecosystems. The intestine plays important roles in barrier function and immunity to defend against environmental stress. However, whether cadmium exposure caused the intestine injury is not well studied. Thus, the aim of this study was to explore the potential mechanisms of cadmium toxicity in the intestine of mud crab (Scylla paramamosain) via physiological, histological, microbial community, and transcriptional analyses. Mud crabs were exposed to 0, 0.01, and 0.125 mg/L cadmium. After a 21-day of cadmium exposure, 0.125 mg/L cadmium caused intestine damaged by decreasing superoxide dismutase and catalase activities, and increasing hydrogen peroxide and malondialdehyde levels. Integrated biological index analysis confirmed that the toxicity of cadmium exhibited a concentration-dependent manner. Comparative transcriptional analyses showed that the up-regulations of several genes associated with heat shock proteins, detoxification and anti-oxidant defense, and two key signaling pathways (PI3k-Akt and apoptosis) revealed an adaptive response mechanism against cadmium exposure. Transcriptomic analysis also suggested that cadmium exposure disturbed the expression of ion transport and immune-related genes, indicating that it has negative effects on the immune functions of the mud crab. Furthermore, the intestinal microbial diversity and composition were significantly influenced by cadmium exposure. The abundance of the dominant phyla Fusobacteria and Bacteroidetes significantly changed after cadmium exposure. KEGG pathway analysis demonstrated that cadmium exposure could change energy metabolism and environmental information processing. Overall, we concluded that excessive cadmium exposure could be potentially exerted adverse effects to the mud crab health by inducing oxidative damage, decreasing immune system, disrupting metabolic function, and altering intestinal microbial composition. These results provided a novel insight into the mechanism of cadmium toxicity on crustaceans.


Subject(s)
Brachyura , Microbiota , Animals , Transcriptome , Brachyura/metabolism , Cadmium/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress , Antioxidants/metabolism , Intestines
12.
Fish Shellfish Immunol ; 135: 108674, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36933585

ABSTRACT

Cytochrome P450 (CYPs) enzymes are one of the critical detoxification enzymes, playing a key role in antioxidant defense. However, the information of CYPs cDNA sequences and their functions are lacked in crustaceans. In this study, a novel full-length of CYP2 from the mud crab (designated as Sp-CYP2) was cloned and characterized. The coding sequence of Sp-CYP2 was 1479 bp in length and encoded a protein containing 492 amino acids. The amino acid sequence of Sp-CYP2 comprised a conserved heme binding site and chemical substrate binding site. Quantitative real-time PCR analysis revealed that Sp-CYP2 was ubiquitously expressed in various tissues, and it was highest in the heart followed by the hepatopancreas. Subcellular localization showed that Sp-CYP2 was prominently located in the cytoplasm and nucleus. The expression of Sp-CYP2 was induced by Vibrio parahaemolyticus infection and ammonia exposure. During ammonia exposure, ammonia exposure can induce oxidative stress and cause severely tissue damage. Knocking down Sp-CYP2 in vivo can increase malondialdehyde content and the mortality of mud crabs after ammonia exposure. All these results suggested that Sp-CYP2 played a crucial role in the defense against environmental stress and pathogen infection in crustaceans.


Subject(s)
Brachyura , Animals , Antioxidants , Base Sequence , Phylogeny , Ammonia , Immunity, Innate/genetics , Arthropod Proteins
13.
Sci Total Environ ; 859(Pt 1): 160305, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36410487

ABSTRACT

The transmission of antibiotic resistance genes (ARGs) affects the safety of aquaculture animals. Dissolved oxygen (DO) can affect the transmission of ARGs, but its mechanism of action in this process is unclear. We conducted laboratory breeding experiment with low and control DO groups. Combined quantitative PCR and 16S rRNA sequencing to study the effect of DO on the spread of ARGs. Hypoxia treatment significantly increased the accumulation of ammonium and nitrite in aquaculture water, and it increased the relative abundances of ARGs and mobile genetic elements (MGEs), especially the ARGs resistant to drugs in the categories of sulfonamide, (flor)/(chlor)/(am)phenicol, and MLSB (macrolide, lincosamide and streptogramin B) and the MGE intI-1(clinic), by 2.39-95.69 % in 28 days relative to the control DO treatment. Though the abundance of ARG carries, especially the Rhodocyclaceae, Caldilineaceae, Cyclobacteriaceae, Saprospiraceae, Enterobacteriaceae, Sphingomonadaceae families, showed higher abundance in low DO groups, relating to the vertical transmission of ARGs. Hypoxia treatment is more likely to promote the horizontal gene transfer (HGT)-related pathways, including ABC transporters, two component system, and quorum sensing, thus to induce the HGT of ARGs. The changed bacterial proliferation also altered the abundance of MGEs, especially intI-1(clinic), which induced HGT of ARGs as well. Additionally, pearson correlation results revealed that the succession of bacterial community function played the strongest role in ARG proliferation, followed by bacterial community structure and MGEs. Our results highlight the importance of suitable DO concentration in controlling the spread of ARGs especially the HGT of ARGs. In the context of global attention to food safety, our results provide important information for ensuring the safety of aquatic products and the sustainable development of aquaculture.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , RNA, Ribosomal, 16S , Drug Resistance, Microbial/genetics , Aquaculture , Hypoxia , Cell Proliferation
14.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233199

ABSTRACT

In the Hippo pathway, activation of Hippo and Warts (Wts) kinases results in the phosphorylation of Yorkie (Yki), to prevent its nuclear translocation. Shrimp aquaculture is threatened by Vibrio genus bacteria. In this study, we examine the role of the Hippo pathway in immune defense against Vibrio parahaemolyticus in Pacific white shrimp Penaeus vannamei. We show that V. parahaemolyticus infection promotes the expression of Yki and facilitates the dephosphorylation and nuclear translocation of Yki, indicating the inhibition of Hippo signaling upon bacterial infection. There is a complex regulatory relationship between the Hippo pathway components Hippo, Wts, and Yki and the immune-related transcription factors Dorsal, Relish, and STAT. Silencing of Hippo and Wts weakened hemocyte phagocytosis, while the silencing of Yki enhanced it, suggesting a positive regulation of shrimp cellular immunity by Hippo signaling activation. In vivo silencing of Hippo and Wts decreased the survival rates of V. parahaemolyticus-infected shrimp and elevated the bacterial content in tissues, while the silencing of Yki showed the opposite results. This suggests that the activation of Hippo signaling and the inhibition of Yki enhance antibacterial immunity in shrimp.


Subject(s)
Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Animals , Immunity , Penaeidae/immunology , Penaeidae/microbiology , Signal Transduction , Transcription Factors/metabolism , Vibrio Infections/veterinary
15.
Fish Shellfish Immunol ; 130: 472-478, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162776

ABSTRACT

Glutaredoxin (Grx) is a class molecule oxidoreductase, which plays a key role in maintaining redox homeostasis and regulating cell survival pathways. However, the expression pattern and function of Grx remain unknown in the mud crab (Scylla paramamosain). In the present study, a novel full-length of Grx 5 from the mud crab (designated as Sp-Grx 5) was cloned and characterized. The open reading frame of Sp-Grx 5 was 441 bp, which encoded a putative protein of 146 amino acids. The amino acid sequence of Sp-Grx 5 contained a typical C-G-F-S redox active motif and several GSH binding sites. Sp-Grx 5 widely existed in all tested tissues with a high-level expression in hepatopancreas. Subcellular localization showed that Sp-Grx 5 was located in the cytoplasm and nucleus. The expression of Sp-Grx 5 was significantly up-regulated after Vibrio parahaemolyticus infection and cadmium exposure, suggesting that Sp-Grx 5 was involved in innate immunity and detoxification. Furthermore, overexpression of Sp-Grx 5 could improve cells viability after H2O2 exposure. All these results indicated that Sp-Grx 5 played important roles in the redox homeostasis and innate immune response in crustaceans.


Subject(s)
Brachyura , Amino Acids , Animals , Arthropod Proteins/chemistry , Bacteria/metabolism , Base Sequence , Cadmium/toxicity , Glutaredoxins/genetics , Hydrogen Peroxide , Immunity, Innate/genetics , Phylogeny
16.
Fish Shellfish Immunol ; 127: 437-445, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779811

ABSTRACT

Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.


Subject(s)
Brachyura/virology , Reoviridae/pathogenicity , Amino Acids/metabolism , Animals , Apoptosis , Aquaculture , Brachyura/enzymology , Brachyura/immunology , Brachyura/metabolism , Fatty Acids, Unsaturated/biosynthesis , Gene Expression Profiling , Lipid Metabolism , Oxidative Stress , Phagocytosis , Reoviridae/physiology
17.
Antioxidants (Basel) ; 11(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35624842

ABSTRACT

Cadmium, one of the most toxic heavy metals, can cause severe oxidative damage to aquatic animals. However, the mechanism whereby the mud crabs respond to cadmium exposure remains unclear. This study investigated the effects of cadmium exposure on oxidative stress and histopathology changes and evaluated the role of the Nrf2 signaling pathway in regulating responses to cadmium-induced hepatotoxicity were investigated in mud crabs. Mud crabs were exposed to 0, 0.01, 0.05, and 0.125 mg/L cadmium for 21 d. The present results indicated that cadmium exposure increased hydrogen peroxide (H2O2) production, lipid peroxidation and tissue damage, but decreased the activity of superoxide dismutase (SOD) and catalase (CAT), and caused lipid peroxidation and tissue damage. The results of an integrated biomarker index analysis suggested that the toxicity of cadmium was positively related to cadmium concentration. The expression levels of the Nrf2 signaling pathway (Nrf2, metallothionein, and cytochrome P450 enzymes) were up-regulated after cadmium exposure. Silencing of Nrf2 in vivo decreased antioxidant gene (SOD, CAT, and glutathione S-transferase) expression, suggesting that Nrf2 can regulate antioxidant genes. Knocking down Nrf2 in vivo also significantly decreased the activity of SOD and CAT after cadmium exposure. Moreover, silencing of Nrf2 in vivo enhanced H2O2 production and the mortality rates of mud crabs after cadmium exposure. The present study indicated that cadmium exposure induced hepatotoxicity in the mud crab by increasing H2O2 content, which decreased the antioxidant capacity, leading to cell injury. In addition, the Nrf2 is activated to bound with antioxidant response element, initiating the expression of antioxidant enzyme genes during cadmium induced hepatotoxicity in the mud crabs.

18.
Dev Comp Immunol ; 133: 104411, 2022 08.
Article in English | MEDLINE | ID: mdl-35447159

ABSTRACT

The Wnt family genes are essentially implicated in development and growth in animals. Accumulating clues have pointed to the importance of Wnts in invertebrate immunity, but the underlying mechanisms are still unclear to date. The Wnt5b has been known to promote white spot syndrome virus (WSSV) infection in shrimp but its role in antibacterial response remains unclear. In the current study, we focused on the involvement of Wnt5b in Vibrio parahaemolyticus infection in Pacific white shrimp Penaeus vannamei. We demonstrated that the expression of Wnt5b was regulated by the IMD-Relish and JAK-STAT pathways but not the Dorsal pathway and was suppressed upon bacterial infection. Although Wnt5b did not affect the cellular immunity in shrimp, it was involved in regulation of humoral immunity. Silencing of Wnt5b in vivo significantly increased expression of several antimicrobial peptides but decreased that of many immune functional proteins including C-type lectins and lysozymes. Treatment with recombinant Wnt5b protein increased the susceptibility of shrimp to V. parahaemolyticus infection, while silencing of Wnt5b in vivo showed an opposite result. These suggested that Wnt5b plays a negative role in antibacterial response in shrimp. Together with previous reports, the current study shows that Wnt5b functions as an inhibitor for shrimp immunity, which is a potential target for improving immune responses against infection.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , White spot syndrome virus 1 , Animals , Anti-Bacterial Agents/metabolism , Arthropod Proteins/metabolism , Immunity, Innate/genetics , White spot syndrome virus 1/physiology
19.
Fish Shellfish Immunol ; 124: 39-46, 2022 May.
Article in English | MEDLINE | ID: mdl-35367375

ABSTRACT

Phosphofructokinase (PFK), the key enzyme of glycolysis, can catalyze the irreversible transphosphorylation of fructose-6-phosphate forming fructose-1, 6-biphosphate. In the present study, a PFK gene from the mud crab Scylla paramamosain, named SpPFK, was cloned and characterized. The full length of SpPFK contained a 5'untranslated region (UTR) of 249 bp, an open reading frame of 2,859 bp, and a 3'UTR of 1,248 bp. The mRNA of SpPFK was highly expressed in the gill, followed by the hemocytes and muscle. The expression of SpPFK was significantly up-regulated after mud crab dicistrovirus-1 (MCDV-1) infection. Knocking down SpPFK in vivo by RNA interference significantly reduced the expression of lactate dehydrogenase after MCDV-1 infection. Furthermore, silencing of SpPFK in vivo increased the survival rate of mud crabs and decreased the MCDV-1 copies in the gill and hepatopancreas after MCDV-1 infection. All these results suggested that SpPFK could play an important role in the process of MCDV-1 proliferation in mud crab.


Subject(s)
Brachyura , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/metabolism , Cell Proliferation , Phosphofructokinases/genetics , Phosphofructokinases/metabolism , Phylogeny
20.
Dev Comp Immunol ; 127: 104267, 2022 02.
Article in English | MEDLINE | ID: mdl-34626689

ABSTRACT

A Dicer2 gene from Scylla paramamosain, named SpDicer2, was cloned and characterized. The full length of SpDicer2 mRNA contains a 121 bp 5'untranslated region (UTR), an open reading frame (ORF) of 4518 bp and a 3' UTR of 850 bp. The SpDicer2 protein contains seven characteristic Dicer domains and showed 34%-65% identity and 54%-79% similarity to other Dicer protein domains, respectively. The mRNA of SpDicer2 was high expressed in hemocytes, intestine and gill and low expressed in the eyestalk and muscle. Moreover, expression of SpDicer2 was significantly responsive to challenges by mud crab reovirus (MCRV), Poly(I:C), LPS, Staphylococcus aureus and Vibrio parahaemolyticus. SpDicer2 was dispersedly presented in the cytoplasm except for a small amount in the nucleus. SpDicer2 could activate SpSTAT to translocate from the cytoplasm to the nucleus, and significantly increase the transcription activity of the wsv069 promoter, suggesting that SpDicer2 activated the JAK/STAT pathway. Furthermore, silencing of SpDicer2 in vivo increased the mortality of MCRV infected mud crab and the viral load in tissues and down-regulated the expression of multiple components of Toll, IMD and JAK-STAT pathways and almost all the examined immune effector genes. These results suggested that SpDicer2 could play an important role in defense against MCRV via activating the JAK/STAT signaling pathways in mud crab.


Subject(s)
Brachyura , Animals , Arthropod Proteins/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Phylogeny , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...