Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999131

ABSTRACT

One of the challenging issues that hinders the application of single-walled carbon nanotubes (SWCNTs) is the poor solubility and the inevitable formation of bundles. Efforts still need to be made towards solving the problem. Herein, we report a non-covalent strategy to disperse aggregated SWCNTs by aromatic cyclic Schiff bases assisted by ultrasonic techniques. The aromatic cyclic Schiff base (OMM) was synthesized via Schiff base reactions, and the molecular structure was determined by ATR-FT-IR, solid-state 13C-NMR, and HRMS. Although the yielded product showed poor solubility in aqueous solution and organic solvents, it could interact with and disperse the aggregated SWCNTs in dimethyl formamide (DMF) under the condition of ultrasound. UV-vis-NIR, FL, Raman spectra, AFM, and TEM, along with computer simulations, provide evidence for the interactions between OMM molecules and SWCNTs and the dispersion thereof. The semiconductive (7,5), (8,6), (12,1), and (9,7)-SWCNTs expressed a preference for dissolution. The capability of dispersion is contributed by π-π, C-H·π, and lone pair (lp)·π interactions between OMM and SWCNTs based on the simulated results. The present non-covalent strategy could provide inspiration for preparing organic cyclic compounds as dispersants for SWCNTs and then facilitate their further utilization.

2.
Adv Mater ; 36(21): e2311643, 2024 May.
Article in English | MEDLINE | ID: mdl-38407359

ABSTRACT

Ultrafast manipulation of magnetic order has challenged the understanding of the fundamental and dynamic properties of magnetic materials. So far single-shot magnetic switching has been limited to ferrimagnetic alloys, multilayers, and designed ferromagnetic (FM) heterostructures. In FM/antiferromagnetic (AFM) bilayers, exchange bias (He) arises from the interfacial exchange coupling between the two layers and reflects the microscopic orientation of the antiferromagnet. Here the possibility of single-shot switching of the antiferromagnet (change of the sign and amplitude of He) with a single femtosecond laser pulse in IrMn/CoGd bilayers is demonstrated. The manipulation is demonstrated in a wide range of fluences for different layer thicknesses and compositions. Atomistic simulations predict ultrafast switching and recovery of the AFM magnetization on a timescale of 2 ps. The results provide the fastest and the most energy-efficient method to set the exchange bias and pave the way to potential applications for ultrafast spintronic devices.

3.
Soft Matter ; 19(26): 4909-4915, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37340798

ABSTRACT

The self-assembly of a C3-symmetric molecule benzene-1,3,5-tricarboxylate substituted with methyl cinnamate (BTECM) has been investigated by a reprecipitation method in H2O and cetyltrimethylammonium bromide (CTAB) aqueous solution, respectively. The nanostructures and characteristics of the assemblies were monitored by UV-Vis spectroscopy, fluorescence (FL) spectroscopy, circular dichroism (CD) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that helical nanostructures were successfully assembled from the achiral C3 molecule BTECM. More importantly, the helices aggregated via different packing modes in H2O and CTAB aqueous solution. In H2O, the nanostructures underwent a process of particles, fibers and helices via H-type aggregate upon aging. In the case of CTAB aqueous solution (1.2 mM), the helices were translated from particles and the molecules were inclined to aggregate via the J-type mode. In addition, the aggregation process could be accelerated by raising the temperature proved by UV-Vis spectra. A molecular aggregation mechanism was proposed based on the experimental results.

4.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120587

ABSTRACT

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

5.
Anal Chim Acta ; 1251: 340999, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-36925289

ABSTRACT

Developing a simple and easy-to-operate biosensor with tunable dynamic range would provide enormous opportunities to promote the diagnostic applications. Herein, an enzyme-responsive electrochemical DNA biosensor is developed by using only-one immobilization probe. The immobilization probe was designed with a two-loop hairpin-like structure that contained the mutually independent target recognition and enzyme (EcoRI restriction endonuclease) responsive domains. The target recognition was based on a toehold-mediated strand displacement reaction strategy. The toehold region was initially caged in the loop of the immobilization probe and showed a relatively low binding affinity with target, which was improved via EcoRI cleavage of immobilization probe to liberate the toehold region. The EcoRI cleavage operation for immobilization probe demonstrated the well regulation ability in detection performance. It showed a largely extended dynamic range, a significantly lowered detection limit and better discrimination ability toward the mismatched sequences whether in two buffers (with high or low salt concentrations) or in the serum system. The advantages also includes simplicity in probe design, and facile biosensor fabrication and operation. It thus opens a new avenue for the development of the modulated DNA biosensor and hold a great potential for the diagnostic applications and drug monitoring.


Subject(s)
Biosensing Techniques , DNA , Limit of Detection , DNA/chemistry , Electrochemical Techniques
6.
Fundam Res ; 2(4): 522-534, 2022 Jul.
Article in English | MEDLINE | ID: mdl-38934004

ABSTRACT

Over the past few decades, the diversified development of antiferromagnetic spintronics has made antiferromagnets (AFMs) interesting and very useful. After tough challenges, the applications of AFMs in electronic devices have transitioned from focusing on the interface coupling features to achieving the manipulation and detection of AFMs. As AFMs are internally magnetic, taking full use of AFMs for information storage has been the main target of research. In this paper, we provide a comprehensive description of AFM spintronics applications from the interface coupling, read-out operations, and writing manipulations perspective. We examine the early use of AFMs in magnetic recordings and conventional magnetoresistive random-access memory (MRAM), and review the latest mechanisms of the manipulation and detection of AFMs. Finally, based on exchange bias (EB) manipulation, a high-performance EB-MRAM is introduced as the next generation of AFM-based memories, which provides an effective method for read-out and writing of AFMs and opens a new era for AFM spintronics.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120134, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34271238

ABSTRACT

Studies have shown that changes in the redox state of cells might be closely related to pathological and physiological processes. Sulfur dioxide and hydrogen peroxide, as a significant redox couple in living cells, are endogenously produced by cells. Here, we report a long-wavelength fluorescent probe to reversibly monitor sulfur dioxide and hydrogen peroxide. This probe (NBD) displayed high selectivity and sensitivity, which could be accumulated in mitochondria for real-time imaging of SO2/H2O2. These results indicated that NBD would be an ideal tool for monitoring the redox cycle state in living cells.


Subject(s)
Fluorescent Dyes , Hydrogen Peroxide , HeLa Cells , Humans , Mitochondria , Optical Imaging , Sulfur Dioxide
8.
Angew Chem Int Ed Engl ; 58(43): 15273-15277, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31436902

ABSTRACT

The formation of well-defined finite-sized aggregates represents an attractive goal in supramolecular chemistry. In particular, construction of discrete π-stacked dye assemblies remains a challenge. Reported here is the design and synthesis of a novel type of discrete π-stacked aggregate from two comparable perylenediimide (PDI) dyads (PEP and PBP). The criss-cross PEP-PBP dimers in solution and (PBP-PEP)-(PEP-PBP) tetramers in the solid state are well elucidated using single-crystal X-ray diffraction, dynamic light scattering, and diffusion-ordered NMR spectroscopy. Extensive π-π stacking between the PDI units of PEP and PBP as well as repulsive interactions of swallow-tailed alkyl substituents are responsible for the selective formation of discrete dimer and tetramer stacks. Our results reveal a new approach to preparing discrete π stacks that are appealing for making assemblies with well-defined optoelectronic properties.

9.
Front Chem ; 7: 473, 2019.
Article in English | MEDLINE | ID: mdl-31334220

ABSTRACT

Terrylene diimide derivatives are pigments for dyes and optoelectric devices. A terrylene diimide derivative N,N'-di(1-undecyldodecyl)terrylene-3,4:11,12-tetracarboxdiimide (DUO-TDI) decorated with long branched alkyl chains on both imide nitrogen atoms was designed and synthesized. The supramolecular assembly behaviors of DUO-TDI in solution and at the liquid-solid interface were both investigated. The assembled nanostructures and photophysical properties of TDI in solution were explored by varying solvent polarity with spectral methods (UV-Vis, FL and FT-IR) and morphological characterization (AFM). Depending on the solution polarities, fibers, disk structures and wires could be observed and they showed diverse photophysical properties. In addition, the interfacial assembly of DUO-TDI was further investigated at the liquid-Highly Oriented Pyrolytic Graphite (HOPG) interface probed by scanning tunneling microscope (STM). Long range ordered monolayers composed of lamellar structures were obtained. The assembly mechanisms were studied for DUO-TDI both in solution and at the interface. Our investigation provides alternative strategy for designing and manipulation of supramolecular nanostructures and corresponding properties of TDI based materials.

10.
Front Chem ; 7: 467, 2019.
Article in English | MEDLINE | ID: mdl-31316975

ABSTRACT

The assembly of a peptide-tetrathiophene-peptide (PTP) conjugate has been investigated in mixed solvents, which has different polarities by changing the solvent proportions. It was found that PTP can form fibers in THF/hexane solutions with 40-80%v of hexane. The fibers were stable and did not change on time. On the other hand, PTP formed ordered structures in a mixed solution with the water content from 40 to 60%v. For the as-prepared solutions, two nanostructures vesicles and parallelogram sheets were obtained. The parallelogram sheets could transform into vesicles on time. The fibers showed supramolecular chirality, however, there was no Cotton effect for vesicles and parallelogram sheets. UV-vis, FL, XRD, FT-IR, and CD spectra together with SEM, AFM, TEM were used to characterize the nanostructures and properties of the assemblies. Molecular packing mechanism was proposed based on the experimental data.

11.
Nanoscale ; 11(21): 10504-10510, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31115419

ABSTRACT

Materials with circularly polarized luminescence (CPL) are currently attracting great interest in view of their potential applications. Here, we reported self-assembled organic nanotubes with switchable CPL performance. A photoacid, 8-hydroxy-1,3,6-pyrenetrisulfonate (HPTS), was co-assembled with an amino-terminated dialkyl glutamide (LG or DG) in mixed solvents of DMF and water. The complex of LG (DG)/HPTS self-assembled into nanotube structures in the tested range of mixed solvents and showed CPL emission. Different mixing ratios of DMF to water in the solvent triggered CPL switching between different wavelengths. It was revealed that the switching of CPL resulted from the different emissions of the protonated (ROH) and deprotonated (RO-) forms of HPTS, which could be regulated by the solvent polarity. Interestingly, the addition of an acid or base could also switch the fluorescence of LG (DG)/HPTS co-assemblies and the corresponding CPL, leading to an acidity-regulated CPL switch. Thus, through a simple co-assembly strategy, switchable CPL was realized in the self-assembled organic nanotubes via both solvent polarity and acidity.

12.
Langmuir ; 35(2): 342-358, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30577691

ABSTRACT

Anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone, namely, perylene bisimides (PBIs), belong to n-type organic semiconductors and possess potential applications in optoelectronic devices. The properties/performance of fabricated nanostructures/devices could be greatly influenced by both molecular structures of PBI building blocks and corresponding arrangement in assembled nanostructures. Many efforts have been made to modify the PBI core and then investigate the nanostructures and properties. However, it is still a great challenge to comprehensively understand the influence of molecular structures on the intermolecular interactions, the self-assembled structures, and the resulting performance. In the present contribution, we mainly summarize recent research aspects on supramolecular assembly behaviors of PBI derivatives assisted by various functional groups. First, a short introduction is given about basic molecular structure, properties, and self-assembly of PBI derivatives. Then, we mainly discuss the modulation of self-assembly of PBIs via introducing various functional groups (flexible or nonflexible chains, and biomolecules especially amino-acid-based groups). After that, the assembly of PBI derivatives from out-of-equilibrium states is described. Finally, a perspective is provided on the design of novel PBI derivatives and the fabrication of unique nanostructures with superior properties.

13.
Org Lett ; 20(19): 6117-6120, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30252493

ABSTRACT

A range of ortho-π-extended PDI derivatives are straightforwardly synthesized in good yields through highly regioselective heteroannulations of ortho-alkynyl-substituted PDI derivatives with sulfur, selenium, or nitrogen nucleophiles. Successful synthesis of pyrrole-fused rylene dyes by using primary amines as nucleophiles indicates the great synthetic potential of this facile annulation route. Further opto-electrochemical study of these novel thiophene-, selenophene-, and pyrrole-fused PDIs suggests that effective π-conjugation enlargement combined with distortion of the perylene core renders these PDI derivatives tunable and desirable physical properties.

14.
Chem Asian J ; 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29873203

ABSTRACT

Porous organic polymers (POPs) have been considered as prominent adsorbents for volatile iodine. So far, both crystalline and amorphous POPs have accomplished excellent iodine capture capability. Considering the difficulty and challenges in preparing perfect crystalline POPs, more explorations into developing versatile amorphous POPs are needed. Herein, amorphous POPs based on the Schiff-base reaction were designed and synthesized for volatile iodine removal. Four amorphous POPs products named as NDB-H, NDB-S, ADB-HS, and ADB-S obtained under different solvothermal conditions were investigated in terms of their morphologies, porosity, and their iodine enrichment performance in detail. It is noteworthy that excellent efficiency for removing iodine vapor was acquired for NDB-S (≈425 wt %), ADB-HS (≈345 wt %), and ADB-S (≈342 wt %). Remarkably, NDB-H exhibited an iodine capture capacity up to ≈443 wt %. Excellent reusability was obtained as well. Amorphous NDB-H has accomplished an extremely high iodine capture performance, illustrating the great chance to exploit versatile amorphous POPs for iodine enrichment and removal based on Schiff-base chemistry.

15.
Sensors (Basel) ; 18(6)2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29874825

ABSTRACT

Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.

16.
Phys Chem Chem Phys ; 19(47): 31540-31544, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28967927

ABSTRACT

The impact of halogenhalogen interactions on the 2D crystallization of n-semiconductors was investigated. The 2D nanostructures and chirality could be altered by the introduction of bromine atoms for both single component and binary surface assembly supported by STM and simulation results.

17.
Chem Asian J ; 12(21): 2827-2833, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28834209

ABSTRACT

The effect of the length of linear alkyl chains substituted at imine positions on the assembly of tetrachlorinated perylene bisimides (1: PBI with -C6 H13 ; 2: PBI with -C12 H25 ) has been investigated. Solvent-induced assembly was performed in solutions of THF and methanol with varying volume ratios. Morphological (SEM, AFM, and TEM) and spectral (UV/Vis, fluorescence, FTIR, and XRD) methods were used to characterize the assembled nanostructures and the molecular arrangement in the aggregates. It was found that uniform structures could be obtained for both molecules in solutions with a high ratio of methanol. PBI 1 formed rigid nanosheets, whereas 2 assembled into longer nanostripes with a high ratio of length to width. On combining the morphological data with the spectral data, it was suggested that π-π stacking predominated in assemblies of 1, and the synergetic effect of van der Waals interactions from the long alkyl chains and π-π stacking between neighboring building blocks facilitated the growth of the long-range-ordered nanostructures of 2. By changing the linear chain length, the hierarchical assembly of PBIs modified on bay positions could be manipulated effectively.

18.
Phys Chem Chem Phys ; 19(34): 23007-23014, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28816310

ABSTRACT

The impact of hydrogen bond formation on the supramolecular assembly of two perylene imide derivatives (PMAMI and PDINH) was systematically investigated in solution and at the liquid-solid interface. PDINH has intrinsic hydrogen bond sites, but this is not the case for PMAMI. The solution assembly was explored by morphological methods (SEM, AFM, TEM and cryo-TEM) and spectral characterization (UV-vis, FL, XRD, and FTIR spectra). The surface assembly at the liquid-solid interface was detected by scanning tunneling microscopy (STM). It was found that in a mixed solution (THF/MeOH, 10 v%/90 v%), PMAMI formed nanofibers together with large sheet structures and PDINH assembled into uniform nanosheets, suggesting different molecular packing routes. The assembled structures could be adjusted by varying the solvent polarity for both molecules. At the liquid-solid interface, clearly distinguished surface nanostructures from PMAMI and PDINH were easily observed. Based on all spectral and morphological characterizations, it was suggested that in solution the assembly of PMAMI was mainly derived by π-π stacking interactions; on the other hand, the synergetic interaction of hydrogen bonds and π-π stacking was the reason for the hierarchical assembly of PDINH. Hydrogen bonds could be formed both for PMAMI and PDINH and stabilized nanostructures at the liquid-solid interface. This investigation could be useful in designing perylene imide-based building blocks for fabricating supramolecular assemblies with predetermined nanostructures and properties.

19.
Chem Asian J ; 12(10): 1104-1110, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28371076

ABSTRACT

The investigation of semiconductors at the surface provides opportunities to observe and understand the mechanism of molecular interaction for the design of semiconductors so that organic electronics with good performance can be built. Herein, the 2D crystallization of rylene diimide based n-type semiconductors (i.e., 1-4) was explored at the liquid-highly oriented pyrolytic graphite interface by means of scanning tunneling microscopy. Rylene diimides 1-3 with increased aromatic dimensions show different surface crystallization behaviors and distinguished 2D patterns. The surface chirality was also found to be directly affected by the aromatic dimensions. The 2D patterns and the surface chirality could also be tuned by the nature of the solvent. In addition, molecular symmetry was found to be of great important for the formation of long-range ordered 2D monolayers. This investigation highlights the importance of the rational design of molecular dimensions and geometrical symmetry in achieving determined 2D nanopatterns on surfaces, especially for the rylene diimide based n-type semiconductors.

20.
Soft Matter ; 13(10): 1948-1955, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28177029

ABSTRACT

Co-assembly of n-type semiconductors NDI and PDI with p-type pyrene derivatives resulted in the formation of stable organogels, which was induced by the strong charge transfer (CT) interactions between acceptors and donors in chloroform. The dimension size of the aromatic core from the acceptors was found to have a significant impact on the organogels. The width of the fibers from CT gels with NDI is about twice that from gels with PDI. It was found that the acceptor NDI preferred an alternate stacking with donors, intercalated with each other via CT interactions. In contrast, the acceptor PDI preferred to stack among themselves within the assemblies and this arose from the stronger π-π interactions because they had larger aromatic cores than the acceptor NDI. The dimension size of the aromatic core has been proved to have a significant impact on the organogels. The substituent impact of the donors was also studied.

SELECTION OF CITATIONS
SEARCH DETAIL