Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1355507, 2024.
Article in English | MEDLINE | ID: mdl-38720778

ABSTRACT

Introduction: Solute carrier (SLC) transport proteins play a crucial role in maintaining cellular nutrient and metabolite homeostasis and are implicated in various human diseases, making them potential targets for therapeutic interventions. However, the study of SLCs has been limited due to the lack of suitable tools, particularly cell-based substrate uptake assays, necessary for understanding their biological functions and for drug discovery purposes. Methods: In this study, a cell-based uptake assay was developed using a stable isotope-labeled compound as the substrate for SLCs, with detection facilitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This assay aimed to address the limitations of existing assays, such as reliance on hazardous radiolabeled substrates and limited availability of fluorescent biosensors. Results: The developed assay was successfully applied to detect substrate uptakes by two specific SLCs: L-type amino acid transporter 1 (LAT1) and sodium taurocholate co-transporting polypeptide (NTCP). Importantly, the assay demonstrated comparable results to the radioactive method, indicating its reliability and accuracy. Furthermore, the assay was utilized to screen for novel inhibitors of NTCP, leading to the identification of a potential NTCP inhibitor compound. Discussion: The findings highlight the utility of the developed cell-based uptake assay as a rapid, simple, and environmentally friendly tool for investigating SLCs' biological roles and for drug discovery purposes. This assay offers a safer alternative to traditional methods and has the potential to contribute significantly to advancing our understanding of SLC function and identifying therapeutic agents targeting SLC-mediated pathways.

2.
Front Pharmacol ; 14: 1220144, 2023.
Article in English | MEDLINE | ID: mdl-37305537

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2021.717730.].

3.
Chem Commun (Camb) ; 59(21): 3099-3102, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36804590

ABSTRACT

Highly efficient synthesis of diverse 2,2-disubstituted 3-methyleneindoline derivatives through a one-pot base-promoted post-Ugi 5-exo-dig "Conia-ene"-type cyclization has been disclosed. The mechanism study indicates that an intramolecular hydrogen bond may play a vital role in this process. The antiproliferative evaluation of cancer cell lines reveals that this protocol provides practical use in the green synthesis of bioactive compound libraries.

4.
Front Chem ; 10: 860985, 2022.
Article in English | MEDLINE | ID: mdl-35494629

ABSTRACT

Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.

5.
Chem Sci ; 12(34): 11484-11489, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34667552

ABSTRACT

Rapadocin is a novel rapamycin-inspired polyketide-tetrapeptide hybrid macrocycle that possesses highly potent and isoform-specific inhibitory activity against the human equilibrative nucleoside transporter 1 (hENT1). Rapadocin contains an epimerizable chiral center in phenylglycine and an olefin group, and can thus exist as a mixture of four stereoisomers. Herein, we report the first total synthesis of the four stereoisomers of rapadocin using two different synthetic strategies and the assignment of their structures. The inhibitory activity of each of the four synthetic isomers on both hENT1 and hENT2 was determined. It was found that the stereochemistry of phenylglycine played a more dominant role than the configuration of the olefin in the activity of rapadocin. These findings will guide the future design and development of rapadocin analogs as new modulators of adenosine signaling.

6.
Front Pharmacol ; 12: 717730, 2021.
Article in English | MEDLINE | ID: mdl-34421612

ABSTRACT

Altered tumor metabolism is a hallmark of cancer and targeting tumor metabolism has been considered as an attractive strategy for cancer therapy. Prostaglandin Reductase 1 (PTGR1) is a rate-limiting enzyme involved in the arachidonic acid metabolism pathway and mainly responsible for the deactivation of some eicosanoids, including prostaglandins and leukotriene B4. A growing evidence suggested that PTGR1 plays a significant role in cancer and has emerged as a novel target for cancer therapeutics. In this review, we summarize the progress made in recent years toward the understanding of PTGR1 function and structure, highlight the roles of PTGR1 in cancer, and describe potential inhibitors of PTGR1. Finally, we provide some thoughts on future directions that might facilitate the PTGR1 research and therapeutics development.

8.
J Biol Chem ; 295(1): 111-124, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31748414

ABSTRACT

Aerobic glycolysis or the Warburg effect (WE) is characterized by increased glucose uptake and incomplete oxidation to lactate. Although the WE is ubiquitous, its biological role remains controversial, and whether glucose metabolism is functionally different during fully oxidative glycolysis or during the WE is unknown. To investigate this question, here we evolved resistance to koningic acid (KA), a natural product that specifically inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a rate-controlling glycolytic enzyme, during the WE. We found that KA-resistant cells lose the WE but continue to conduct glycolysis and surprisingly remain dependent on glucose as a carbon source and also on central carbon metabolism. Consequently, this altered state of glycolysis led to differential metabolic activity and requirements, including emergent activities in and dependences on fatty acid metabolism. These findings reveal that aerobic glycolysis is a process functionally distinct from conventional glucose metabolism and leads to distinct metabolic requirements and biological functions.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glycolysis , Oxygen/metabolism , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Glucose/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/antagonists & inhibitors , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Humans , MCF-7 Cells , Sesquiterpenes/pharmacology
9.
Angew Chem Int Ed Engl ; 58(48): 17158-17162, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31591797

ABSTRACT

Glucose transporters play an essential role in cancer cell proliferation and survival and have been pursued as promising cancer drug targets. Using microarrays of a library of new macrocycles known as rapafucins, which were inspired by the natural product rapamycin, we screened for new inhibitors of GLUT1. We identified multiple hits from the rapafucin 3D microarray and confirmed one hit as a bona fide GLUT1 ligand, which we named rapaglutin A (RgA). We demonstrate that RgA is a potent inhibitor of GLUT1 as well as GLUT3 and GLUT4, with an IC50 value of low nanomolar for GLUT1. RgA was found to inhibit glucose uptake, leading to a decrease in cellular ATP synthesis, activation of AMP-dependent kinase, inhibition of mTOR signaling, and induction of cell-cycle arrest and apoptosis in cancer cells. Moreover, RgA was capable of inhibiting tumor xenografts in vivo without obvious side effects. RgA could thus be a new chemical tool to study GLUT function and a promising lead for developing anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Macrolides/pharmacology , Small Molecule Libraries/chemistry , A549 Cells , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Macrolides/chemistry , Molecular Structure , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protein Array Analysis , Signal Transduction , Sirolimus/chemistry , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism , Tacrolimus/chemistry , Tacrolimus Binding Proteins
10.
Cell Chem Biol ; 26(5): 652-661.e4, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30827938

ABSTRACT

The combination of AMD3100 and low-dose FK506 has been shown to accelerate wound healing in vivo. Although AMD3100 is known to work by releasing hematopoietic stem cells into circulation, the mechanism of FK506 in this setting has remained unknown. In this study, we investigated the activities of FK506 in human cells and a diabetic-rat wound model using a non-immunosuppressive FK506 analog named FKVP. While FKVP was incapable of inhibiting calcineurin, wound-healing enhancement with AMD3100 was unaffected. Further study showed that both FK506 and FKVP activate BMP signaling in multiple cell types through FKBP12 antagonism. Furthermore, selective inhibition of BMP signaling abolished stem cell recruitment and wound-healing enhancement by combination treatment. These results shed new light on the mechanism of action of FK506 in acceleration of wound healing, and raise the possibility that less toxic FKBP ligands such as FKVP can replace FK506 for the treatment of chronic wounds.


Subject(s)
Ligands , Peptides, Cyclic/pharmacology , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Tacrolimus Binding Protein 1A/chemistry , Wound Healing/drug effects , Animals , Benzylamines , Bone Morphogenetic Proteins/metabolism , Cyclams , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Drug Synergism , Female , Gene Knockout Techniques , Heterocyclic Compounds/pharmacology , Humans , Jurkat Cells , Peptides, Cyclic/chemistry , Phosphorylation/drug effects , Rats , Receptors, CXCR4/antagonists & inhibitors , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Tacrolimus/chemistry , Tacrolimus/pharmacology , Tacrolimus Binding Protein 1A/deficiency , Tacrolimus Binding Protein 1A/genetics , Tacrolimus Binding Protein 1A/metabolism
11.
Nat Chem ; 11(3): 254-263, 2019 03.
Article in English | MEDLINE | ID: mdl-30532015

ABSTRACT

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains. Screening of the rapafucin library in human cells led to the discovery of rapadocin, an inhibitor of nucleoside uptake. Rapadocin is a potent, isoform-specific and FKBP-dependent inhibitor of the equilibrative nucleoside transporter 1 and is efficacious in an animal model of kidney ischaemia reperfusion injury. Together, these results demonstrate that rapafucins are a new class of chemical probes and drug leads that can expand the repertoire of protein targets well beyond mTOR and calcineurin.


Subject(s)
Drug Discovery/methods , Macrolides/chemistry , Macrolides/metabolism , Protective Agents/chemistry , Protective Agents/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Animals , Cell Line , Human Umbilical Vein Endothelial Cells , Humans , Mice , Proteome/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Sirolimus/chemistry , Sirolimus/metabolism , Swine , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Tacrolimus/chemistry , Tacrolimus/metabolism , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism
12.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28566383

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib.IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors.


Subject(s)
B-Lymphocytes/drug effects , B-Lymphocytes/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Immunologic Factors/metabolism , Signal Transduction/drug effects , Virus Activation/drug effects , Humans , Receptors, Antigen, B-Cell/metabolism
13.
Cell Chem Biol ; 24(5): 605-613.e5, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28457705

ABSTRACT

Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Oxazolidinones/pharmacology , Protein Biosynthesis/drug effects , Alkaloids/metabolism , Antineoplastic Agents/metabolism , Biological Products/metabolism , Dose-Response Relationship, Drug , HeLa Cells , Humans , Molecular Docking Simulation , Oxazolidinones/metabolism , Protein Conformation , Ribosomes/drug effects , Ribosomes/genetics
14.
ChemMedChem ; 7(12): 2204-26, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23112085

ABSTRACT

Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Interactions , Chloroquine/pharmacology , Ferric Compounds/metabolism , Flavin-Adenine Dinucleotide/metabolism , Humans , Malaria/drug therapy , Methylene Blue/pharmacology , NAD/analogs & derivatives , NAD/metabolism , NADP/metabolism , Oxidative Stress/drug effects , Quinolines/metabolism , Riboflavin/metabolism
15.
ChemMedChem ; 6(9): 1603-15, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21994127

ABSTRACT

Artemisinins rapidly oxidize leucomethylene blue (LMB) to methylene blue (MB); they also oxidize dihydroflavins such as the reduced conjugates RFH2 of riboflavin (RF), and FADH2 of the cofactor flavin adenine dinucleotide (FAD), to the corresponding flavins. Like the artemisinins, MB oxidizes FADH2, but unlike artemisinins, it also oxidizes NAD(P)H. Like MB, artemisinins are implicated in the perturbation of redox balance in the malaria parasite by interfering with parasite flavoenzyme disulfide reductases. The oxidation of LMB by artemisinin is inhibited by chloroquine (CQ), an inhibition that is abruptly reversed by verapamil (VP). CQ also inhibits artemisinin-mediated oxidation of RFH2 generated from N-benzyl-1,4-dihydronicotinamide (BNAH)-RF, or FADH2 generated from NADPH or NADPH-Fre, an effect that is also modulated by verapamil. The inhibition likely proceeds by the association of LMB or dihydroflavin with CQ, possibly involving donor-acceptor or π complexes that hinder oxidation by artemisinin. VP competitively associates with CQ, liberating LMB or dihydroflavin from their respective CQ complexes. The observations explain the antagonism between CQ-MB and CQ-artemisinins in vitro, and are reconcilable with CQ perturbing intraparasitic redox homeostasis. They further suggest that a VP-CQ complex is a means by which VP reverses CQ resistance, wherein such a complex is not accessible to the putative CQ-resistance transporter (PfCRT).


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Chloroquine/antagonists & inhibitors , Malaria/drug therapy , Methylene Blue/pharmacology , Verapamil/pharmacology , Animals , Antimalarials/chemistry , Artemisinins/chemistry , Chloroquine/chemistry , Chloroquine/pharmacology , Drug Resistance , Drug Synergism , Flavin-Adenine Dinucleotide/metabolism , Homeostasis/drug effects , Humans , Malaria/metabolism , Malaria/pathology , Methylene Blue/chemistry , Oxidation-Reduction/drug effects , Verapamil/chemistry
16.
Biochemistry ; 50(26): 5893-904, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21627110

ABSTRACT

1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.


Subject(s)
Aspartic Acid , Conserved Sequence , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/metabolism , Oxygen/metabolism , Spectrum Analysis , Vitamin K 2/metabolism , Absorption , Bacteria/enzymology , Catalytic Domain , Coenzyme A/chemistry , Coenzyme A/metabolism , Coenzyme A/pharmacology , Enzyme Stability , Hydrogen Bonding , Models, Molecular , Mutagenesis, Site-Directed , Oxo-Acid-Lyases/antagonists & inhibitors , Oxo-Acid-Lyases/genetics , Oxygen/chemistry , Phenols/chemistry , Phenols/metabolism , Protons
17.
ChemMedChem ; 6(2): 279-91, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21275052

ABSTRACT

Flavin adenine dinucleotide (FAD) is reduced by NADPH-E. coli flavin reductase (Fre) to FADH(2) in aqueous buffer at pH 7.4 under argon. Under the same conditions, FADH(2) in turn cleanly reduces the antimalarial drug methylene blue (MB) to leucomethylene blue. The latter is rapidly re-oxidized by artemisinins, thus supporting the proposal that MB exerts its antimalarial activity, and synergizes the antimalarial action of artemisinins, by interfering with redox cycling involving NADPH reduction of flavin cofactors in parasite flavin disulfide reductases. Direct treatment of the FADH(2) generated from NADPH-Fre-FAD by artemisinins and antimalaria-active tetraoxane and trioxolane structural analogues under physiological conditions at pH 7.4 results in rapid reduction of the artemisinins, and efficient conversion of the peroxide structural analogues into ketone products. Comparison of the relative rates of FADH(2) oxidation indicate optimal activity for the trioxolane. Therefore, the rate of intraparastic redox perturbation will be greatest for the trioxolane, and this may be significant in relation to its enhanced in vitro antimalarial activities. (1)H NMR spectroscopic studies using the BNAH-riboflavin (RF) model system indicate that the tetraoxane is capable of using both peroxide units in oxidizing the RFH(2) generated in situ. Use of the NADPH-Fre-FAD catalytic system in the presence of artemisinin or tetraoxane confirms that the latter, in contrast to artemisinin, consumes two reducing equivalents of NADPH. None of the processes described herein requires the presence of ferrous iron. Ferric iron, given its propensity to oxidize reduced flavin cofactors, may play a role in enhancing oxidative stress within the malaria parasite, without requiring interaction with artemisinins or peroxide analogues. The NADPH-Fre-FAD system serves as a convenient mimic of flavin disulfide reductases that maintain redox homeostasis in the malaria parasite.


Subject(s)
Antimalarials/chemistry , FMN Reductase/metabolism , Flavins/chemistry , Methylene Blue/analogs & derivatives , Models, Theoretical , Peroxides/chemistry , Methylene Blue/chemistry
19.
Bioorg Med Chem Lett ; 20(13): 3855-8, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20627563

ABSTRACT

Significant conformational change is detected by circular dichroism and fluorimetry for the major component of the enterobactin synthetase in crowded solutions mimicking the intracellular environment. The structural change correlates well with the extent of the crowding-induced side product suppression in nonribosomal enterobactin synthesis. In contrast, protein-stabilizing solvophobic agents such as glycerol have no effect on the formation of side products, excluding crowding-induced protein stability as a cause for the observed enhancement of the product specificity of the synthetase. These results strongly support that macromolecular crowding is an indispensable physiological factor for normal functioning of the nonribosomal enterobactin synthetase by altering the active sites to increase its product specificity.


Subject(s)
Enterobactin/biosynthesis , Ligases/chemistry , Ligases/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Circular Dichroism , Escherichia coli/enzymology , Fluorometry , Molecular Conformation , Solutions
20.
J Biol Chem ; 285(39): 30159-69, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20643650

ABSTRACT

1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has been identified in the crystal structure of a virtually identical ortholog (96.8% sequence identity) from Salmonella typhimurium through comparison with a bicarbonate-insensitive orthologue. Kinetic properties of the enzyme and its site-directed mutants of the bicarbonate binding site indicate that the exogenous bicarbonate anion is essential to the enzyme activity. With this essential catalytic role, the simple bicarbonate anion is an enzyme cofactor, which is usually a small organic molecule derived from vitamins, a metal ion, or a metal-containing polyatomic anionic complex. This finding leads to classification of the DHNA-CoA synthases into two evolutionarily conserved subfamilies: type I enzymes that are bicarbonate-dependent and contain a conserved glycine at the bicarbonate binding site; and type II enzymes that are bicarbonate-independent and contain a conserved aspartate at the position similar to the enzyme-bound bicarbonate. In addition, the unique location of the enzyme-bound bicarbonate allows it to be proposed as a catalytic base responsible for abstraction of the α-proton of the thioester substrate in the enzymatic reaction, suggesting a unified catalytic mechanism for all DHNA-CoA synthases.


Subject(s)
Bicarbonates/chemistry , Coenzymes/chemistry , Escherichia coli/enzymology , Oxo-Acid-Lyases/chemistry , Vitamin K 2/chemistry , Bicarbonates/metabolism , Binding Sites , Catalysis , Coenzymes/metabolism , Escherichia coli/genetics , Evolution, Molecular , Kinetics , Mutagenesis, Site-Directed , Oxo-Acid-Lyases/classification , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Structural Homology, Protein , Vitamin K 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...