Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 11: 1227889, 2023.
Article in English | MEDLINE | ID: mdl-37885455

ABSTRACT

Nutritional oils (mainly omega-3 fatty acids) are receiving increased attention as critical supplementary compounds for the improvement and maintenance of human health and wellbeing. However, the predominant sources of these oils have historically shown numerous limitations relating to desirability and sustainability; hence the crucial focus is now on developing smarter, greener, and more environmentally favourable alternatives. This study was undertaken to consider and assess the numerous prevailing and emerging techniques implicated across the stages of fatty acid downstream processing. A structured and critical comparison of the major classes of disruption methodology (physical, chemical, thermal, and biological) is presented, with discussion and consideration of the viability of new extraction techniques. Owing to a greater desire for sustainable industrial practices, and a desperate need to make nutritional oils more available; great emphasis has been placed on the discovery and adoption of highly sought-after 'green' alternatives, which demonstrate improved efficiency and reduced toxicity compared to conventional practices. Based on these findings, this review also advocates new forays into application of novel nanomaterials in fatty acid separation to improve the sustainability of nutritional oil downstream processing. In summary, this review provides a detailed overview of the current and developing landscape of nutritional oil; and concludes that adoption and refinement of these sustainable alternatives could promptly allow for development of a more complete 'green' process for nutritional oil extraction; allowing us to better meet worldwide needs without costing the environment.

2.
Trends Microbiol ; 31(8): 872-873, 2023 08.
Article in English | MEDLINE | ID: mdl-36801156
3.
Mar Drugs ; 20(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36286478

ABSTRACT

In this study, we have demonstrated a bioprocessing approach encompassing the exogenous addition of low-molecular-weight compounds to tune the fatty acid (FA) profile in a novel thraustochytrid strain to produce desirable FAs. Maximum lipid recovery (38%, dry wt. biomass) was obtained at 1% Tween 80 and 0.25 mg/L of Vitamin B12. The transesterified lipid showed palmitic acid (C16, 35.7% TFA), stearic acid (C18, 2.1% TFA), and oleic acid (C18:1, 18.7% TFA) as the main components of total FAs, which are mainly present in plant oils. Strikingly, D-limonene addition in the fermentation medium repressed the production of polyunsaturated fatty acid (PUFAs). Sulfur-polymerization-guided lipid separation revealed the presence of saturated (SFAs, 53% TFA) and monounsaturated fatty acids (MUFAs, 46.6% TFA) in thraustochytrid oil that mimics plant-oil-like FA profiles. This work is industrially valuable and advocates the use of sulfur polymerization for preparation of plant-like oils through tuneable thraustochytrid lipids.


Subject(s)
Fatty Acids , Polysorbates , Fermentation , Polymerization , Limonene , Fatty Acids, Unsaturated , Oleic Acid , Fatty Acids, Monounsaturated , Plant Oils , Sulfur , Stearic Acids , Vitamin B 12 , Palmitic Acids
4.
Trends Biotechnol ; 40(3): 271-280, 2022 03.
Article in English | MEDLINE | ID: mdl-34507810

ABSTRACT

Microalgae have been evaluated as promising resource for biodiesel production, but algal biofuel production is not yet commercially viable, which reflects the high energy costs linked with cultivation, harvesting, and dewatering of algae. As crude oil processing declines, microalgae biorefineries are being considered for producing bioactives such as enzymes, proteins, omega-3 oils, pigments, recombinant products, and vitamins, to offset the costs of biofuel production. We believe that producing algal bioactives through advanced manufacturing pathways, encompassing a biorefinery approach, would be effective, profitable, and economical.


Subject(s)
Microalgae , Biofuels , Biomass , Costs and Cost Analysis , Plants
5.
Trends Biotechnol ; 40(4): 448-462, 2022 04.
Article in English | MEDLINE | ID: mdl-34627647

ABSTRACT

Microalgal biotechnology research continues to expand due to largely unexplored marine environments and growing consumer interest in healthy products. Thraustochytrids, which are marine oleaginous protists, are known for their production of bioactives with significant applications in nutraceuticals, pharmaceuticals, and aquaculture. A wide range of high-value biochemicals, such as nutritional supplements (omega-3 fatty acids), squalene, exopolysaccharides (EPSs), enzymes, aquaculture feed, and biodiesel and pigment compounds, have been investigated. We discuss thraustochytrids as potential feedstocks to produce various bioactive compounds and advocate developing a biorefinery to offset production costs. We anticipate that future advances in cell manufacturing, lipidomic analysis, and nanotechnology-guided lipid extraction would facilitate large-scale cost-competitive production through these microbes.


Subject(s)
Microalgae , Stramenopiles , Biofuels , Biotechnology , Dietary Supplements , Microalgae/chemistry
6.
Protist ; 171(3): 125738, 2020 07.
Article in English | MEDLINE | ID: mdl-32544845

ABSTRACT

This paper represents a comprehensive study of two new thraustochytrids and a marine Rhodotorula red yeast isolated from Australian coastal waters for their abilities to be a potential renewable feedstock for the nutraceutical, food, fishery and bioenergy industries. Mixotrophic growth of these species was assessed in the presence of different carbon sources: glycerol, glucose, fructose, galactose, xylose, and sucrose, starch, cellulose, malt extract, and potato peels. Up to 14g DW/L (4.6gDW/L-day and 2.8gDW/L-day) of biomass were produced by Aurantiochytrium and Thraustochytrium species, respectively. Thraustochytrids biomass contained up to 33% DW of lipids, rich in omega-3 polyunsaturated docosahexaenoic acid (C22:6, 124mg/g DW); up to 10.2mg/gDW of squalene and up to 61µg/gDW of total carotenoids, composed of astaxanthin, canthaxanthin, echinenone, and ß-carotene. Along with the accumulation of these added-value chemicals in biomass, thraustochytrid representatives showed the ability to secrete extracellular polysaccharide matrixes containing lipids and proteins. Rhodotorula sp lipids (26% DW) were enriched in palmitic acid (C16:0, 18mg/gDW) and oleic acid (C18:1, 41mg/gDW). Carotenoids (87µg/gDW) were mainly represented by ß-carotene (up to 54µg/gDW). Efficient growth on organic and inorganic sources of carbon and nitrogen from natural and anthropogenic wastewater pollutants along with intracellular and extracellular production of valuable nutrients makes the production of valuable chemicals from isolated species economical and sustainable.


Subject(s)
Biodegradation, Environmental , Chytridiomycota , Lipids/biosynthesis , Rhodotorula , Water Pollutants/metabolism , Acyltransferases/metabolism , Biomass , Carotenoids/metabolism , Chytridiomycota/growth & development , Chytridiomycota/isolation & purification , Chytridiomycota/metabolism , Docosahexaenoic Acids/biosynthesis , Fatty Acids, Unsaturated/biosynthesis , Nutrients/metabolism , Polysaccharides/biosynthesis , Rhodotorula/growth & development , Rhodotorula/isolation & purification , Rhodotorula/metabolism , Seawater/microbiology , Wastewater/microbiology , Wetlands
7.
Mar Drugs ; 18(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155832

ABSTRACT

Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and ß-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.


Subject(s)
Geologic Sediments/chemistry , Microalgae/chemistry , Rhizophoraceae/chemistry , Stramenopiles/chemistry , Australia , Biomass , Carotenoids/chemistry , Carotenoids/pharmacology , Ecosystem , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Lipids/chemistry , Lipids/pharmacology , Phylogeny , Polysaccharides/chemistry
8.
Appl Biochem Biotechnol ; 188(1): 112-123, 2019 May.
Article in English | MEDLINE | ID: mdl-30345480

ABSTRACT

A 28-day feeding experiment with formulated feed using docosahexaenoic acid (DHA)-rich whole cells of freeze-dried marine microalgae Schizochytrium sp. to understand the distribution of fatty acids in a laboratory model zebrafish was conducted. Three feeds, commercial feed, 50:50 feed (50% commercial and 50% algae), and pure algae, were investigated. All feeds were consumed by zebrafish and showed optimal growth and weight gain with a survival rate of 100%. Lipids were extracted from four different tissues, brain, liver, muscle, and blood, to understand the distribution of fatty acids with respect to the feed. Maximum lipid was observed in zebrafish fed with 50:50 feed in all tissue samples. An increasing concentration of fatty acids was observed upon increasing the experimental time. Algae feed supported the DHA accumulation in all tissue samples compared to other feeds and resulted in an overall increment of polyunsaturated fatty acid content. To understand the role of fatty acids during zebrafish embryogenesis, eggs were collected at the end of the experiment and fatty acid content was analyzed. However, no significant difference was observed in fatty acid composition of embryos fed with algae. This provides a base for the understanding of fatty acid distribution in zebrafish with commercial and algae feeds and support the utilization of Schizochytrium biomass as a potential replacement for fishmeal.


Subject(s)
Animal Feed , Fatty Acids, Omega-3/metabolism , Microalgae/metabolism , Zebrafish/metabolism , Animals , Dietary Supplements , Fatty Acids, Omega-3/blood , Liver/metabolism , Muscle, Skeletal/metabolism , Tissue Distribution
9.
J Microbiol Methods ; 125: 28-32, 2016 06.
Article in English | MEDLINE | ID: mdl-27050419

ABSTRACT

Discovering microalgae with high lipid productivity are among the key milestones for achieving sustainable biodiesel production. Current methods of lipid quantification are time intensive and costly. A rapid colorimetric method based on sulfo-phospho-vanillin (SPV) reaction was developed for the quantification of microbial lipids to facilitate screening for lipid producing microalgae. This method was successfully tested on marine thraustochytrid strains and vegetable oils. The colorimetric method results correlated well with gravimetric method estimates. The new method was less time consuming than gravimetric analysis and is quantitative for lipid determination, even in the presence of carbohydrates, proteins and glycerol.


Subject(s)
Colorimetry/methods , Lipids/analysis , Microalgae/chemistry , Benzaldehydes , Biofuels , Data Accuracy , Esterification , Industrial Microbiology , Plant Oils/chemistry
10.
Biotechnol J ; 11(3): 345-55, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26580151

ABSTRACT

The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production.


Subject(s)
Algal Proteins/metabolism , Fatty Acids, Omega-3/biosynthesis , Stramenopiles/chemistry , Algal Proteins/genetics , Aquatic Organisms/chemistry , Aquatic Organisms/classification , Australia , Biodiversity , Biofuels , India , Phylogeny , Stramenopiles/classification
11.
Mar Drugs ; 13(8): 5111-27, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26270668

ABSTRACT

Lipid extraction is an integral part of biodiesel production, as it facilitates the release of fatty acids from algal cells. To utilise thraustochytrids as a potential source for lipid production. We evaluated the extraction efficiency of various solvents and solvent combinations for lipid extraction from Schizochytrium sp. S31 and Thraustochytrium sp. AMCQS5-5. The maximum lipid extraction yield was 22% using a chloroform:methanol ratio of 2:1. We compared various cell disruption methods to improve lipid extraction yields, including grinding with liquid nitrogen, bead vortexing, osmotic shock, water bath, sonication and shake mill. The highest lipid extraction yields were obtained using osmotic shock and 48.7% from Schizochytrium sp. S31 and 29.1% from Thraustochytrium sp. AMCQS5-5. Saturated and monounsaturated fatty acid contents were more than 60% in Schizochytrium sp. S31 which suggests their suitability for biodiesel production.


Subject(s)
Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , Lipids/chemistry , Stramenopiles/chemistry , Biofuels , Fatty Acids/chemistry , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Solvents/chemistry , Stramenopiles/metabolism
12.
Protist ; 166(1): 106-21, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25594491

ABSTRACT

The superior characteristics of high photon flux and diffraction-limited spatial resolution achieved by synchrotron-FTIR microspectroscopy allowed molecular characterization of individual live thraustochytrids. Principal component analysis revealed distinct separation of the single live cell spectra into their corresponding strains, comprised of new Australasian thraustochytrids (AMCQS5-5 and S7) and standard cultures (AH-2 and S31). Unsupervised hierarchical cluster analysis (UHCA) indicated close similarities between S7 and AH-7 strains, with AMCQS5-5 being distinctly different. UHCA correlation conformed well to the fatty acid profiles, indicating the type of fatty acids as a critical factor in chemotaxonomic discrimination of these thraustochytrids and also revealing the distinctively high polyunsaturated fatty acid content as key identity of AMCQS5-5. Partial least squares discriminant analysis using cross-validation approach between two replicate datasets was demonstrated to be a powerful classification method leading to models of high robustness and 100% predictive accuracy for strain identification. The results emphasized the exceptional S-FTIR capability to perform real-time in vivo measurement of single live cells directly within their original medium, providing unique information on cell variability among the population of each isolate and evidence of spontaneous lipid peroxidation that could lead to deeper understanding of lipid production and oxidation in thraustochytrids for single-cell oil development.


Subject(s)
Fatty Acids/analysis , Single-Cell Analysis/methods , Spectroscopy, Fourier Transform Infrared/methods , Stramenopiles/chemistry , Stramenopiles/classification , Biostatistics
13.
Bioresour Technol ; 184: 373-378, 2015 May.
Article in English | MEDLINE | ID: mdl-25497057

ABSTRACT

In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3.


Subject(s)
Aquatic Organisms/metabolism , Cannabis/chemistry , Carbohydrate Metabolism , Cellulase/metabolism , Fatty Acids, Omega-3/biosynthesis , Stramenopiles/metabolism , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Biomass , Carbohydrate Metabolism/drug effects , Carbohydrates/analysis , Cellobiose/pharmacology , Chromatography, High Pressure Liquid , Esters/metabolism , Fatty Acids/metabolism , Fermentation/drug effects , Glucose/metabolism , Glucose/pharmacology , Hydrolysis , Phylogeny , Stramenopiles/drug effects , Stramenopiles/growth & development , Xylose/pharmacology
14.
Analyst ; 138(20): 6016-31, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23957051

ABSTRACT

The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production.


Subject(s)
Fatty Acids, Unsaturated/analysis , Rhodotorula/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Animals , Fatty Acids, Unsaturated/biosynthesis , Microspectrophotometry/methods , Time Factors , Yeasts
15.
J Ind Microbiol Biotechnol ; 40(11): 1231-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23990167

ABSTRACT

Marine heterotrophic microbes are capable of accumulating large amounts of lipids, omega-3 fatty acids, carotenoids, and have potential for biodiesel production. Pollen baiting using Pinus radiata pollen grain along with direct plating techniques were used in this study as techniques for the isolation of oil-producing marine thraustochytrid species from Queenscliff, Victoria, Australia. Thirteen isolates were obtained using either direct plating or using pine pollen, with pine pollen acting as a specific substrate for the surface attachment of thraustochytrids. The isolates obtained from the pollen baiting technique showed a wide range of docosahexaenoic acid (DHA) accumulation, from 11 to 41 % of total fatty acid content (TFA). Direct plating isolates showed a moderate range of DHA accumulation, from 19 to 25 % of TFA. Seven isolates were identified on the basis of 18S rRNA sequencing technique as Thraustochytrium species, Schizochytrium species, and Ulkenia species. Although both methods appear to result in the isolation of similar strains, pollen baiting proved to be a simpler method for the isolation of these relatively slow-growing organisms.


Subject(s)
Biofuels/supply & distribution , Fatty Acids, Omega-3/biosynthesis , Pollen/physiology , Stramenopiles/isolation & purification , Stramenopiles/metabolism , Carbon/metabolism , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/biosynthesis , Fatty Acids/analysis , Fatty Acids/chemistry , Fatty Acids/metabolism , Fatty Acids, Omega-3/analysis , Phylogeny , Pinus , RNA, Ribosomal, 18S/genetics , Stramenopiles/classification , Stramenopiles/genetics , Victoria
16.
J Biosci Bioeng ; 114(4): 411-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22727444

ABSTRACT

Marine microbes are competent organisms, some of which can accumulate large amounts of lipids. A yeast strain, Rhodotorula mucilaginosa AMCQ8A was isolated from the marine water of the Queenscliff region, Victoria, Australia. The yeast isolate was identified by sequencing 18s rDNA genes. Scanning electron microscopy images revealed scars on the surface of the yeast cells. The Fourier transform infrared spectroscopy microspectroscopy studies demonstrated the presence of unsaturated fatty acids by differential microscopic analysis. The sharp band at 1745 cm⁻¹ was represented by ν(C=O) stretches of ester functional groups from lipids and fats, and therefore indicated the presence of total lipids produced by the cells. Over 65% of the fatty acids from the yeast strain were analyzed as C16 and C18:1 with omega-3 content from about 6% to 7%. Thus, this marine-derived yeast could be a potential source of lipids, including omega-3 fatty acids.


Subject(s)
Fatty Acids, Omega-3/analysis , Fatty Acids, Unsaturated/analysis , Rhodotorula/chemistry , Rhodotorula/isolation & purification , Seawater/microbiology , DNA, Fungal/genetics , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/metabolism , Molecular Sequence Data , RNA, Ribosomal, 18S/genetics , Rhodotorula/classification , Rhodotorula/genetics , Spectroscopy, Fourier Transform Infrared , Victoria
17.
Biotechnol Adv ; 30(6): 1733-45, 2012.
Article in English | MEDLINE | ID: mdl-22406165

ABSTRACT

Thraustochytrids are large-celled marine heterokonts and classified as oleaginous microorganisms due to their production of docosahexaenoic (DHA) and eicosapentaenoic (EPA) ω-3-fatty acids. The applications of microbial DHA and EPA for human health are rapidly expanding, and a large number of clinical trials have been carried out to verify their efficacy. The development of refined isolation and identification techniques is important for the cultivation of thraustochytrids. With a high proportion of lipid biomass, thraustochytrids are also amenable to various production strategies which increase omega-3 oil output. Modifications to the existing lipid extraction methods and utilisation of sophisticated analytical instruments have increased extraction yields of DHA and EPA. Other metabolites such as enzymes, carotenoids and extracellular polysaccharides can also be obtained from these marine protists. Approaches such as the exploration for more diverse isolates having fast growth rates, metabolic engineering including gene cloning, and growing thraustochytrids on alternate low cost carbon source, will further enhance the biotechnological potential of thraustochytrids.


Subject(s)
Biotechnology , Fatty Acids, Omega-3/metabolism , Stramenopiles/chemistry , Bacteria/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/isolation & purification , Humans , Seawater/microbiology , Stramenopiles/cytology , Stramenopiles/isolation & purification , Stramenopiles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...