Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705964

ABSTRACT

The present work reports the application of novel gut strains Bacillus safensis CGK192 (Accession No. OM658336) and Bacillus australimaris CGK221 (Accession No. OM658338) in the biological degradation of synthetic polymer i.e., high-density polyethylene (HDPE). The biodegradation assay based on polymer weight loss was conducted under laboratory conditions for a period of 90 days along with regular evaluation of bacterial biomass in terms of total protein content and viable cells (CFU/cm2). Notably, both strains achieved significant weight reduction for HDPE films without any physical or chemical pretreatment in comparison to control. Hydrophobicity and biosurfactant characterization were also done in order to assess strains ability to form bacterial biofilm over the polymer surface. The post-degradation characterization of HDPE was also performed to confirm degradation using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electronic microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX), and Gas chromatography-mass spectrometry (GC-MS). Interestingly strain CGK221 was found to be more efficient in forming biofilm over polymer surface as indicated by lower half-life (i.e., 0.00032 day-1) and higher carbonyl index in comparison to strain CGK192. The findings reflect the ability of our strains to develop biofilm and introduce an oxygenic functional group into the polymer surface, thereby making it more susceptible to degradation.

2.
Environ Geochem Health ; 45(12): 9391-9409, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37184721

ABSTRACT

The resiliency of plastic products against microbial degradation in natural environment often creates devastating changes for humans, plants, and animals on the earth's surface. Biodegradation of plastics using indigenous bacteria may serve as a critical approach to overcome this resulting environmental stress. In the present work, a polyethylene degrading bacterium Alcaligenes faecalis strain ISJ128 (Accession No. MK968769) was isolated from partially degraded polyethylene film buried in the soil at plastic waste disposal site. The biodegradation studies were conducted by employing various methods such as hydrophobicity assessment of the strain ISJ128, measurement of viability and total protein content of bacterial biofilm attached to the polyethylene surface. The proliferation of bacterial cells on polyethylene film, as indicated by high growth response in terms of protein content (85.50 µg mL-1) and viability (1010 CFU mL-1), proposed reasonable suitability of our strain A. faecalis ISJ128 toward polyethylene degradation. The results of biodegradation assay revealed significant degradation (10.40%) of polyethylene film within a short period of time (i.e., 60 days), whereas no signs of degradation were seen in control PE film. A. faecalis strain ISJ128 also demonstrated a removal rate of 0.0018 day-1 along with half-life of 462 days. The scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy studies not only displayed changes on polyethylene surface but also altered level of intensity of functional groups and an increase in the carbonyl indexes justifying the degradation of polyethylene film due to bacterial activity. In addition, the secondary structure prediction (M fold software) of 16SrDNA proved the stable nature of the bacterial strain, thereby reflecting the profound scope of A. faecalis strain ISJ128 as a potential degrader for the eco-friendly disposal of polyethylene waste. Schematic representation of methodology.


Subject(s)
Alcaligenes faecalis , Polyethylene , Humans , Animals , Polyethylene/chemistry , Polyethylene/metabolism , Alcaligenes faecalis/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Biofilms
3.
Arch Microbiol ; 205(3): 101, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36862211

ABSTRACT

The accumulation and mismanagement of high-density polyethylene (HDPE) waste in the environment is a complex problem in the present scenario. Biodegradation of this thermoplastic polymer is a promising environmentally sustainable method that offers a significant opportunity to address plastic waste management with minimal negative repercussion on the environment. In this framework, HDPE-degrading bacterium strain CGK5 was isolated from the fecal matter of cow. The biodegradation efficiency of strain was assessed, including percentage reduction in HDPE weight, cell surface hydrophobicity, extracellular biosurfactant production, viability of surface adhered cells, as well as biomass in terms of protein content. Through molecular techniques, strain CGK5 was identified as Bacillus cereus. Significant weight loss of 1.83% was observed in the HDPE film treated with strain CGK5 for 90 days. The FE-SEM analysis revealed the profused bacterial growth which ultimately caused the distortions in HDPE films. Furthermore, EDX study indicated a significant decrease in percentage carbon content at atomic level, whereas FTIR analysis confirmed chemical groups' transformation as well as an increment in the carbonyl index supposedly caused by bacterial biofilm biodegradation. Our findings shed light on the ability of our strain B. cereus CGK5 to colonize and use HDPE as a sole carbon source, demonstrating its applicability for future eco-friendly biodegradation processes.


Subject(s)
Bacillus cereus , Polyethylene , Animals , Female , Cattle , Bacillus cereus/genetics , Biodegradation, Environmental , Carbon , Feces , Plastics
4.
Arch Microbiol ; 204(7): 402, 2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35718788

ABSTRACT

Biodegradation is the most promising environmentally sustainable method that offers a significant opportunity with minimal negative environmental consequences while searching for solutions to this global problem of plastic pollution that has now spread to almost everywhere in the entire world. In the present work, HDPE-degrading bacterial strain CGK112 was isolated from the fecal matter of a cow. The bacterial strain was identified as Micrococcus luteus CGK112 by 16S rRNA sequence coding analysis. Significant weight loss, i.e., 3.85% was recorded in the HDPE film treated with strain CGK112 for 90 days. The surface micromorphology was examined using FE-SEM, which revealed spectacular bacterial colonization as well as structural deformation. Furthermore, the EDX study indicated a significant decrease in the atomic percentage of carbon content, whereas FTIR analysis confirmed functional groups alternation as well as an increase in the carbonyl index which can be attributed to the metabolic activity of biofilm. Our findings provide insight into the capacity of our strain CGK112 to colonize and utilize HDPE as a single carbon source, thus promoting its degradation.


Subject(s)
Micrococcus luteus , Polyethylene , Animals , Bacteria/metabolism , Biodegradation, Environmental , Biofilms , Carbon/metabolism , Cattle , Female , Micrococcus luteus/genetics , Micrococcus luteus/metabolism , Polyethylene/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Spectroscopy, Fourier Transform Infrared
5.
Front Oncol ; 12: 950835, 2022.
Article in English | MEDLINE | ID: mdl-36591523

ABSTRACT

Background: Breast cancer is the most common type of cancer in women, and vast research is being conducted throughout the world for the treatment of this malignancy by natural products using various computational approaches. Xanthohumol, a prenylated flavonoid, is known for its anticancer activity; however, the mechanism behind its action is still in the preliminary stage. Methods: The current study aimed to analyze the efficacy of xanthohumol compared to the currently available anticancer drugs targeting phosphoinositide-3-kinase (PI3K), serine/threonine kinase (AKT) receptors, and human epidermal growth factor receptor 2 (HER2) for breast cancer treatment through in silico analysis. Results: The result revealed that the target compound showed significant binding affinity to targets within the PI3K, AKT, and HER2 signaling pathways with a binding energy of -7.5, -7.9, and -7.9 kcal/mol, respectively. Further prediction studies were then made concerning this compound's absorption, distribution, metabolism, and excretion (ADME) as well as drug-likeness properties, resulting in its oral bioavailability with only a single violation of Lipinski's rule of five. Conclusions: The finding revealed the ability of xanthohumol to bind with multiple cancer cell signaling molecules including PI3K, AKT kinase, and HER2. The current novel study opened the door to advancing research into the management and treatment of breast cancer.

6.
Biotechnol Rep (Amst) ; 29: e00577, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33364185

ABSTRACT

The prime objective of our study was to evaluate antimicrobial and antioxidant activities of Pseudomonas aeruginosa KD155 isolated from cow dung. For identification of the isolate KD155, molecular techniques were employed and obtained 16S rRNA gene sequence was deposited in the NCBI GenBank under the accession number MK801234. Extracellular crude extract of P. aeruginosa KD155 displayed significant antimicrobial activity against Bacillus subtilis (MTCC 441) and Staphylococcus aureus (MTCC 7443) in comparison to tetracycline and ketoconazole. The resistance of extracellular crude chloroform extract to DPPH scavenging activity was also observed with 77.49% inhibition rate reflecting strong antioxidant activity. In addition, HP-TLC, FT-IR and GC-MS analysis of extracellular chloroform crude extract was done which revealed phenolic compound (quercetin) as major bioactive metabolite being produced by our isolate KD155. Further, the stability of 16S rRNA sequence of the strain was studied using bioinformatics tools viz. mfold and NEB cutter indicating the thermodynamic stability of its gene sequence.

7.
Heliyon ; 6(7): e04398, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32671274

ABSTRACT

The accelerated population and industrial development have caused an extensive increase in the use of plastic products. Since polyethylene degrades slowly generating poisonous compounds, therefore, elimination of plastic from the environment is the prerequisite requirement today. Biodegradation of plastics seems to be a convenient and effective method to curb this problem. In view of this, the present study focuses on LDPE degradation capability of bacterial strain Pseudomonas aeruginosa ISJ14 (Accession No. MG554742) isolated from waste dump sites. Further, the stability of 16S rDNA of the isolate was determined by applying bioinformatics tools. For biodegradation studies, the polyethylene films were incubated with the culture of P. aeruginosa ISJ14 in two different growth medium namely Bushnell Hass broth (BHM) and Minimal Salt medium (MSM) for 60 days at 37 °C on 180 rpm. In addition, hydrophobicity and viability of bacterial isolate along with quantification of total protein content was also done. The microbial degradation was confirmed by surface modification and formation of fissures on polyethylene surface along with the variation in the intensity of functional groups as well as an increase in the carbonyl index using field emission scanning electron microscopy (Fe-SEM) and Fourier transform infrared spectrophotometry (FTIR). These results indicate that P. aeruginosa strain ISJ14 can prove to be a suitable candidate for LDPE waste treatment without causing any harm to our health or environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...