Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 286: 204-212, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33740637

ABSTRACT

INTRODUCTION: Attenuated adult hippocampal neurogenesis may manifest in affective symptomatology and/or resistance to antidepressant treatment. While early-life adversity and the short variant ('s') of the serotonin transporter gene's long polymorphic region (5-HTTLPR) are suggested as interacting risk factors for affective disorders, no studies have examined whether their superposed risk effectuates neurogenic changes into adulthood. Similarly, it is not established whether reduced hippocampal volume in adolescence, variously identified as a marker and antecedent of affective disorders, anticipates diminished adult neurogenesis. We investigate these potential developmental precursors of neurogenic alterations using a bonnet macaque model. METHODS: Twenty-five male infant bonnet macaques were randomized to stressed [variable foraging demand (VFD)] or normative [low foraging demand (LFD)] rearing protocols and genotyped for 5-HTTLPR polymorphisms. Adolescent MRI brain scans (mean age 4.2y) were available for 14 subjects. Adult-born neurons were detected post-mortem (mean age 8.6y) via immunohistochemistry targeting the microtubule protein doublecortin (DCX). Models were adjusted for age and weight. RESULTS: A putative vulnerability group (VG) of VFD-reared 's'-carriers (all 's/l') exhibited reduced neurogenesis compared to non-VG subjects. Neurogenesis levels were positively predicted by ipsilateral hippocampal volume normalized for total brain volume, but not by contralateral or raw hippocampal volume. LIMITATIONS: No 's'-carriers were identified in LFD-reared subjects, precluding a 2×2 factorial analysis. CONCLUSION: The 's' allele (with adverse rearing) and low adolescent hippocampal volume portend a neurogenic deficit in adult macaques, suggesting persistent alterations in hippocampal plasticity may contribute to these developmental factors' affective risk in humans.


Subject(s)
Adverse Childhood Experiences , Serotonin Plasma Membrane Transport Proteins , Adolescent , Adult , Animals , Child , Child, Preschool , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Macaca/metabolism , Male , Neurogenesis/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Stress, Psychological/genetics
2.
Article in English | MEDLINE | ID: mdl-30246167

ABSTRACT

BACKGROUND: Maternal response to allostatic overload during infant rearing may alter neurobiological measures in grown offspring, potentially increasing susceptibility to mood and anxiety disorders. We examined maternal cerebrospinal fluid (CSF) glutamate response during exposure to variable foraging demand (VFD), a bonnet macaque model of allostatic overload, testing whether activation relative to baseline predicted concomitant CSF elevations of the stress neuropeptide, corticotropin-releasing factor. We investigated whether VFD-induced activation of maternal CSF glutamate affects maternal-infant attachment patterns and offspring CSF 5-hydroxyindoleacetic acid concentrations. METHODS: Mother-infant dyads were exposed to the "VFD stressor," a paradigm in which mothers experience 16 weeks of foraging uncertainty while rearing their infant offspring. Through staggering the infant age of VFD onset, both a cross-sectional design and a longitudinal design were used. Maternal CSF glutamate and glutamine concentrations post-VFD exposure were cross-sectionally compared to maternal VFD naive controls. Proportional change in concentrations of maternal glutamate (and glutamine), a longitudinal measure, was evaluated in relation to VFD-induced elevations of CSF corticotropin-releasing factor. The former measure was related to maternal-infant proximity scores obtained during the final phases of VFD exposure. Maternal glutamatergic response to VFD exposure was used as a predictor variable for young adolescent offspring CSF metabolites of serotonin, dopamine, and norepinephrine. RESULTS: Following VFD exposure, maternal CSF glutamate concentrations correlated positively with maternal CSF CRF concentrations. Activation relative to baseline of maternal CSF glutamate concentrations following VFD exposure correlated directly with a) increased maternal-infant proximity during the final phases of VFD and b) offspring CSF concentrations of monoamine metabolites including 5-hydroxyindoleacetic acid, which was elevated relative to controls. CONCLUSIONS: Activation of maternal CSF glutamate in response to VFD-induced allostasis is directly associated with elevations of maternal CSF corticotropin-releasing factor. Maternal CSF glutamate alterations induced by VFD potentially compromise serotonin neurotransmission in grown offspring, conceivably modeling human vulnerability to treatment-resistant mood and anxiety disorders.

3.
PLoS One ; 12(9): e0184340, 2017.
Article in English | MEDLINE | ID: mdl-28880949

ABSTRACT

INTRODUCTION: Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term "social allostasis." We postulate that maternal food insecurity induces a "superorganism" state through coordination of individual HPA axis response. METHODS: Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. RESULTS: Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our "dyadic vulnerability" index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p < 0.0001) whereas relatively "advantaged" dyads exhibited maternal cortisol increases in response to VFD exposure. COMMENT: In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a "superorganism" version of HPA axis homeostasis, provisionally termed "social allostasis."


Subject(s)
Feeding Behavior/physiology , Macaca radiata/physiology , Maternal Behavior/physiology , Allostasis , Animals , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/cerebrospinal fluid , Female , Hydrocortisone/blood , Hydrocortisone/cerebrospinal fluid , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL