Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
J Infect Dis ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38748986

ABSTRACT

BACKGROUND: Tenofovir/lamivudine/dolutegravir (TLD) is the preferred first-line antiretroviral therapy (ART) regimen for people with HIV (PWH), including those who were previously virologically suppressed on non-nucleoside reverse transcriptase inhibitors (NNRTIs). We sought to estimate the real-world effectiveness of the TLD transition in Ugandan public-sector clinics. METHODS: We conducted a prospective cohort study of PWH ≥18 years who were transitioned from NNRTI-based ART to TLD. Study visits were conducted on the day of TLD transition and 24- and 48- weeks later. The primary endpoint was viral suppression (<200 copies/mL) at 48-weeks. We collected blood for retrospective viral load (VL) assessment and conducted genotypic resistance tests for specimens with VL >500 copies/mL. RESULTS: We enrolled 500 participants (median age of 47 years; 41% women). At 48-weeks after TLD transition, 94% of participants were in care with a VL <200 copies/mL (n = 469/500); 2% (n = 11/500) were lost from care or died; and only 2% (n = 9/500) had a VL >500 copies/mL. No incident resistance to DTG was identified. Few participants (2%, n = 9/500) discontinued TLD due to adverse events. CONCLUSIONS: High rates of viral suppression, high tolerability, and lack of emergent drug resistance support use of TLD as the preferred first-line regimen in the region.

2.
Nat Commun ; 15(1): 3644, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684655

ABSTRACT

Despite expanded antiretroviral therapy (ART) in South Africa, HIV-1 transmission persists. Integrase strand transfer inhibitors (INSTI) and long-acting injectables offer potential for superior viral suppression, but pre-existing drug resistance could threaten their effectiveness. In a community-based study in rural KwaZulu-Natal, prior to widespread INSTI usage, we enroled 18,025 individuals to characterise HIV-1 drug resistance and transmission networks to inform public health strategies. HIV testing and reflex viral load quantification were performed, with deep sequencing (20% variant threshold) used to detect resistance mutations. Phylogenetic and geospatial analyses characterised transmission clusters. One-third of participants were HIV-positive, with 21.7% having detectable viral loads; 62.1% of those with detectable viral loads were ART-naïve. Resistance to older reverse transcriptase (RT)-targeting drugs was found, but INSTI resistance remained low (<1%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, particularly to rilpivirine (RPV) even in ART-naïve individuals, was concerning. Twenty percent of sequenced individuals belonged to transmission clusters, with geographic analysis highlighting higher clustering in peripheral and rural areas. Our findings suggest promise for INSTI-based strategies in this setting but underscore the need for RPV resistance screening before implementing long-acting cabotegravir (CAB) + RPV. The significant clustering emphasises the importance of geographically targeted interventions to effectively curb HIV-1 transmission.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Phylogeny , Rural Population , Viral Load , Humans , HIV Infections/transmission , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/epidemiology , Drug Resistance, Viral/genetics , South Africa/epidemiology , HIV-1/genetics , HIV-1/drug effects , Female , Male , Adult , Middle Aged , Viral Load/drug effects , Young Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Adolescent , Mutation , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648902

ABSTRACT

SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.


Subject(s)
COVID-19 , Endoribonucleases , Protein Serine-Threonine Kinases , SARS-CoV-2 , Unfolded Protein Response , Virus Replication , X-Box Binding Protein 1 , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , SARS-CoV-2/metabolism , Humans , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , COVID-19/immunology , Mice , Mesocricetus , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Female
4.
AIDS ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507584

ABSTRACT

BACKGROUND: People with HIV (PWH) on integrase inhibitor-based regimens may be at risk of excess weight gain, but it is unclear if this risk is consistent across settings. We assessed weight change over 48 weeks among PWH who were transitioned to tenofovir disoproxil fumarate/lamivudine/dolutegravir (TLD). DESIGN: We conducted a prospective cohort study at public-sector HIV clinics in Uganda and South Africa. METHODS: Eligible participants were adults who were transitioned to TLD. Weight was measured at enrollment, 24-, and 48-weeks post TLD transition. Our outcomes were (1) weight change, (2) change in waist circumference, and (3) clinically significant weight gain, defined as ≥10% increase in weight from baseline, over 48 weeks. We used linear mixed-effects regression models, adjusted for demographic factors, to estimate weight gain and identify risk factors. RESULTS: Weight data were available for 428 participants in Uganda and 367 in South Africa. The mean weight change was 0.6 kg [95%CI: 0.1-1.0] in Uganda and 2.9 kg [2.3-3.4] in South Africa (p < 0.001). The mean change in waist circumference was 0.8 cm [95%CI: 0.0-1.5]) in Uganda and 2.3 cm [95%CI: 1.4-3.2] in South Africa (p = 0.012). Clinically significant weight gain occurred in 9.8% [7.0-12.6] of participants in Uganda and 18.0% [14.1-21.9] in South Africa (p < 0.001). After adjustment, PWH gained significantly less weight in Uganda than in South Africa. CONCLUSIONS: PWH in South Africa experienced significantly greater weight gain and increases in waist circumference compared to Uganda. Strategies to address weight gain in PWH should be carefully considered and may vary by region.

5.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370662

ABSTRACT

Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.

6.
Cell Mol Immunol ; 21(2): 171-183, 2024 02.
Article in English | MEDLINE | ID: mdl-37985854

ABSTRACT

An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Post-Acute COVID-19 Syndrome , Immunity, Innate
7.
PLoS Med ; 20(9): e1004293, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37738247

ABSTRACT

• Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens. • HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens. • Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines. • Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing. • In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions. • Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , HIV Infections/epidemiology , Phylogeny , HIV-1/genetics , Drug Resistance, Viral/genetics , Anti-Retroviral Agents/therapeutic use , Mutation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
8.
Viruses ; 15(9)2023 09 15.
Article in English | MEDLINE | ID: mdl-37766338

ABSTRACT

Background: Dolutegravir (DTG)-based antiretroviral therapy (ART) rarely leads to virological failure (VF) and drug resistance in integrase strand transfer inhibitor (INSTI)-naïve persons living with HIV (PLWH). As a result, limited data are available on INSTI-associated drug resistance mutations (DRMs) selected by DTG-containing ART regimens. Methods: We reviewed studies published through July 2023 to identify those reporting emergent major INSTI-associated DRMs in INSTI-naïve PLWH receiving DTG and those containing in vitro DTG susceptibility results using a standardized assay. Results: We identified 36 publications reporting 99 PLWH in whom major nonpolymorphic INSTI-associated DRMs developed on a DTG-containing regimen and 21 publications containing 269 in vitro DTG susceptibility results. DTG-selected DRMs clustered into four largely non-overlapping mutational pathways characterized by mutations at four signature positions: R263K, G118R, N155H, and Q148H/R/K. Eighty-two (82.8%) viruses contained just one signature DRM, including R263K (n = 40), G118R (n = 24), N155H (n = 9), and Q148H/R/K (n = 9). Nine (9.1%) contained ≥1 signature DRM, and eight (8.1%) contained just other DRMs. R263K and G118R were negatively associated with one another and with N155H and Q148H/K/R. R263K alone conferred a median 2.0-fold (IQR: 1.8-2.2) reduction in DTG susceptibility. G118R alone conferred a median 18.8-fold (IQR:14.2-23.4) reduction in DTG susceptibility. N155H alone conferred a median 1.4-fold (IQR: 1.2-1.6) reduction in DTG susceptibility. Q148H/R/K alone conferred a median 0.8-fold (IQR: 0.7-1.1) reduction in DTG susceptibility. Considerably higher levels of reduced susceptibility often occurred when signature DRMs occurred with additional INSTI-associated DRMs. Conclusions: Among INSTI-naïve PLWH with VF and treatment emergent INSTI-associated DRMs, most developed one of four signature DRMs, most commonly R263K or G118R. G118R was associated with a much greater reduction in DTG susceptibility than R263K.


Subject(s)
HIV Integrase Inhibitors , HIV-1 , Humans , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , HIV-1/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Mutation
9.
Cell Rep ; 42(8): 112991, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590132

ABSTRACT

Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.


Subject(s)
COVID-19 , Aged , Humans , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
10.
Am J Trop Med Hyg ; 109(4): 890-894, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37580023

ABSTRACT

Determination of previous SARS-COV-2 infection is hampered by the absence of a standardized test. The marker used to assess previous exposure is IgG antibody to the nucleocapsid (IgG anti-N), although it is known to wane quickly from peripheral blood. The accuracies of seven antibody tests (virus neutralization test, IgG anti-N, IgG anti-spike [anti-S], IgG anti-receptor binding domain [anti-RBD], IgG anti-N + anti-RBD, IgG anti-N + anti-S, and IgG anti-S + anti-RBD), either singly or in combination, were evaluated on 502 cryopreserved serum samples collected before the COVID-19 vaccination rollout in Kumasi, Ghana. The accuracy of each index test was measured using a composite reference standard based on a combination of neutralization test and IgG anti-N antibody tests. According to the composite reference, 262 participants were previously exposed; the most sensitive test was the virus neutralization test, with 95.4% sensitivity (95% CI: 93.6-97.3), followed by 79.0% for IgG anti-N + anti-S (95% CI: 76.3-83.3). The most specific tests were virus neutralization and IgG anti-N, both with 100% specificity. Viral neutralization and IgG anti-N + anti-S were the overall most accurate tests, with specificity/sensitivity of 100/95.2% and 79.0/92.1%, respectively. Our findings indicate that IgG anti-N alone is an inadequate marker of prior exposure to SARS COV-2 in this population. Virus neutralization assay appears to be the most accurate assay in discerning prior infection. A combination of IgG anti-N and IgG anti-S is also accurate and suited for assessment of SARS COV-2 exposure in low-resource settings.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
11.
J Antimicrob Chemother ; 78(8): 2000-2007, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37367727

ABSTRACT

BACKGROUND: Due to the high prevalence of resistance to NNRTI-based ART since 2018, consolidated recommendations from the WHO have indicated dolutegravir as the preferred drug of choice for HIV treatment globally. There is a paucity of resistance outcome data from HIV-1 non-B subtypes circulating across West Africa. AIMS: We characterized the mutational profiles of persons living with HIV from a cross-sectional cohort in North-East Nigeria failing a dolutegravir-based ART regimen. METHODS: WGS of plasma samples collected from 61 HIV-1-infected participants following virological failure of dolutegravir-based ART were sequenced using the Illumina platform. Sequencing was successfully completed for samples from 55 participants. Following quality control, 33 full genomes were analysed from participants with a median age of 40 years and median time on ART of 9 years. HIV-1 subtyping was performed using SNAPPy. RESULTS: Most participants had mutational profiles reflective of exposure to previous first- and second-line ART regimens comprised NRTIs and NNRTIs. More than half of participants had one or more drug resistance-associated mutations (DRMs) affecting susceptibility to NRTIs (17/33; 52%) and NNRTIs (24/33; 73%). Almost a quarter of participants (8/33; 24.4%) had one or more DRMs affecting tenofovir susceptibility. Only one participant, infected with HIV-1 subtype G, had evidence of DRMs affecting dolutegravir susceptibility-this was characterized by the T66A, G118R, E138K and R263K mutations. CONCLUSIONS: This study found a low prevalence of resistance to dolutegravir; the data are therefore supportive of the continual rollout of dolutegravir as the primary first-line regimen for ART-naive participants and the preferred switch to second-line ART across the region. However, population-level, longer-term data collection on dolutegravir outcomes are required to further guide implementation and policy action across the region.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , Humans , Adult , Cross-Sectional Studies , HIV Infections/drug therapy , Heterocyclic Compounds, 3-Ring/therapeutic use , Heterocyclic Compounds, 3-Ring/pharmacology , Oxazines/therapeutic use , Pyridones/therapeutic use , HIV Integrase Inhibitors/therapeutic use , HIV Integrase Inhibitors/pharmacology , Mutation , Drug Resistance, Viral/genetics , Integrases/genetics
12.
Lancet HIV ; 10(4): e254-e265, 2023 04.
Article in English | MEDLINE | ID: mdl-36642087

ABSTRACT

BACKGROUND: Long-acting injectable cabotegravir pre-exposure prophylaxis (PrEP) is recommended by WHO as an additional option for HIV prevention in sub-Saharan Africa, but there is concern that its introduction could lead to an increase in integrase-inhibitor resistance undermining treatment programmes that rely on dolutegravir. We aimed to project the health benefits and risks of cabotegravir-PrEP introduction in settings in sub-Saharan Africa. METHODS: With HIV Synthesis, an individual-based HIV model, we simulated 1000 setting-scenarios reflecting both variability and uncertainty about HIV epidemics in sub-Saharan Africa and compared outcomes for each with and without cabotegravir-PrEP introduction. PrEP use is assumed to be risk-informed and to be used only in 3-month periods (the time step for the model) when having condomless sex. We consider three groups at risk of integrase-inhibitor resistance emergence: people who start cabotegravir-PrEP after (unknowingly) being infected with HIV, those who seroconvert while on PrEP, and those with HIV who have residual cabotegravir drugs concentrations during the early tail period after recently stopping PrEP. We projected the outcomes of policies of cabotegravir-PrEP introduction and of no introduction in 2022 across 50 years. In 50% of setting-scenarios we considered that more sensitive nucleic-acid-based HIV diagnostic testing (NAT), rather than regular antibody-based HIV rapid testing, might be used to reduce resistance risk. For cost-effectiveness analysis we assumed in our base case a cost of cabotegravir-PrEP drug to be similar to oral PrEP, resulting in a total annual cost of USD$144 per year ($114 per year and $264 per year considered in sensitivity analyses), a cost-effectiveness threshold of $500 per disability-adjusted life years averted, and a discount rate of 3% per year. FINDINGS: Reflecting our assumptions on the appeal of cabotegravir-PrEP, its introduction is predicted to lead to a substantial increase in PrEP use with approximately 2·6% of the adult population (and 46% of those with a current indication for PrEP) receiving PrEP compared with 1·5% (28%) without cabotegravir-PrEP introduction across 20 years. As a result, HIV incidence is expected to be lower by 29% (90% range across setting-scenarios 6-52%) across the same period compared with no introduction of cabotegravir-PrEP. In people initiating antiretroviral therapy, the proportion with integrase-inhibitor resistance after 20 years is projected to be 1·7% (0-6·4%) without cabotegravir-PrEP introduction but 13·1% (4·1-30·9%) with. Cabotegravir-PrEP introduction is predicted to lower the proportion of all people on antiretroviral therapy with viral loads less than 1000 copies per mL by 0·9% (-2·5% to 0·3%) at 20 years. For an adult population of 10 million an overall decrease in number of AIDS deaths of about 4540 per year (-13 000 to -300) across 50 years is predicted, with little discernible benefit with NAT when compared with standard antibody-based rapid testing. AIDS deaths are predicted to be averted with cabotegravir-PrEP introduction in 99% of setting-scenarios. Across the 50-year time horizon, overall HIV programme costs are predicted to be similar regardless of whether cabotegravir-PrEP is introduced (total mean discounted annual HIV programme costs per year across 50 years is $151·3 million vs $150·7 million), assuming the use of standard antibody testing. With antibody-based rapid HIV testing, the introduction of cabotegravir-PrEP is predicted to be cost-effective under an assumed threshold of $500 per disability-adjusted life year averted in 82% of setting-scenarios at the cost of $144 per year, in 52% at $264, and in 87% at $114. INTERPRETATION: Despite leading to increases in integrase-inhibitor drug resistance, cabotegravir-PrEP introduction is likely to reduce AIDS deaths in addition to HIV incidence. Long-acting cabotegravir-PrEP is predicted to be cost-effective if delivered at similar cost to oral PrEP with antibody-based rapid HIV testing. FUNDING: Bill & Melinda Gates Foundation, National Institute of Allergy and Infectious Diseases of the National Institutes of Health.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , HIV Integrase Inhibitors , Pre-Exposure Prophylaxis , Adult , Humans , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Pre-Exposure Prophylaxis/methods , Acquired Immunodeficiency Syndrome/drug therapy , Cost-Benefit Analysis , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , Integrases/therapeutic use
13.
Lancet HIV ; 10(3): e202-e208, 2023 03.
Article in English | MEDLINE | ID: mdl-36610438

ABSTRACT

HIV drug resistance is a major global hurdle to successful and sustained antiretroviral therapy. Global guidelines recommend testing for antiretroviral drug resistance and results are used to inform treatment regimen design for patients at different stages of therapy. Several clinical trials investigated optimal regimens after failure of first-line antiretroviral therapy, yielding data that advanced knowledge and informed care. However, further interpretation of data from these studies questioned the benefit of antiretroviral drug resistance testing for cases in which first-line treatment is not effective and, furthermore, that relying on the results of antiretroviral drug resistance testing could be misleading and unnecessary. In this Viewpoint, which is largely focused on high-income settings, we review these data, reflect on the potential problems with their interpretation, and call for caution in their extrapolation. Without negating the importance of the data, and recognising the varied circumstances related to HIV drug resistance testing in different global settings, we advise caution before changing current practice and recommendations. We believe that we should not universally stop considering HIV drug resistance testing at failure of first-line antiretroviral therapy.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , HIV Infections/drug therapy , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral , Antiretroviral Therapy, Highly Active/adverse effects , Anti-Retroviral Agents/therapeutic use , Treatment Failure , Viral Load
14.
Nat Rev Microbiol ; 21(2): 112-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36307535

ABSTRACT

Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/pharmacology , Amino Acid Substitution , Antibodies, Neutralizing , Epitopes , Antibodies, Viral
15.
Virus Evol ; 8(2): veac080, 2022.
Article in English | MEDLINE | ID: mdl-36533153

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

16.
Wellcome Open Res ; 7: 8, 2022.
Article in English | MEDLINE | ID: mdl-36226161

ABSTRACT

Background: National lockdowns have led to significant interruption to children's education globally. In the Autumn term in 2020, school absence in England and Wales was almost five times higher than the same period in 2019. Transmission of SARS-CoV-2 in schools and ongoing interruption to education remains a concern. However, evaluation of rapid point of care (POC) polymerase chain reaction (PCR) testing in British schools has not been undertaken. Methods: This is a survey of secondary schools in England that implemented PCR-based rapid POC testing. The study aims to measure the prevalence of SARS-CoV-2 infection in schools, to assess the impact of this testing on school attendance and closures, and to describe schools experiences with testing. All schools utilised the SAMBA II SARS-CoV-2 testing platform. Results: 12 fee-paying secondary schools in England were included. Between September 1 st 2020 and December 16 th 2020, 697 on site rapid POC PCR tests were performed and 6.7% of these were positive for SARS-CoV-2 infection. There were five outbreaks in three schools during this time which were contained. Seven groups of close contacts within the school known as bubbles had to quarantine but there were no school closures. 84% of those tested were absent from school for less than one day whilst awaiting their test result. This potentially saved between 1047 and 1570 days off school in those testing negative compared to the NHS PCR laboratory test. Schools reported a positive impact of having a rapid testing platform as it allowed them to function as fully as possible during this pandemic. Conclusions: Rapid POC PCR testing platforms should be widely available and utilised in school settings. Reliable positive tests will prevent outbreaks and uncontrolled spread of infection within school settings. Reliable negative test results will reassure students, parents and staff and prevent disruption to education.

17.
Nat Commun ; 13(1): 6131, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253377

ABSTRACT

Real-world data on vaccine-elicited neutralising antibody responses for two-dose AZD1222 in African populations are limited. We assessed baseline SARS-CoV-2 seroprevalence and levels of protective neutralizing antibodies prior to vaccination rollout using binding antibodies analysis coupled with pseudotyped virus neutralisation assays in two cohorts from West Africa: Nigerian healthcare workers (n = 140) and a Ghanaian community cohort (n = 527) pre and post vaccination. We found 44 and 28% of pre-vaccination participants showed IgG anti-N positivity, increasing to 59 and 39% respectively with anti-receptor binding domain (RBD) IgG-specific antibodies. Previous IgG anti-N positivity significantly increased post two-dose neutralizing antibody titres in both populations. Serological evidence of breakthrough infection was observed in 8/49 (16%). Neutralising antibodies were observed to wane in both populations, especially in anti-N negative participants with an observed waning rate of 20% highlighting the need for a combination of additional markers to characterise previous infection. We conclude that AZD1222 is immunogenic in two independent West African cohorts with high background seroprevalence and incidence of breakthrough infection in 2021. Waning titres post second dose indicates the need for booster dosing after AZD1222 in the African setting despite hybrid immunity from previous infection.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Ghana , Humans , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
18.
Cell Rep ; 40(7): 111220, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35963244

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike N-terminal domain (NTD) remains poorly characterized despite enrichment of mutations in this region across variants of concern (VOCs). Here, we examine the contribution of the NTD to infection and cell-cell fusion by constructing chimeric spikes bearing B.1.617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus. We find that the Delta NTD on a Kappa or wild-type (WT) background increases S1/S2 cleavage efficiency and virus entry, specifically in lung cells and airway organoids, through use of TMPRSS2. Delta exhibits increased cell-cell fusogenicity that could be conferred to WT and Kappa spikes by Delta NTD transfer. However, chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD do not show more efficient TMPRSS2 use or fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions in a spike context-dependent manner, and allosteric interactions may be lost when combining regions from more distantly related VOCs.


Subject(s)
COVID-19 , Virus Internalization , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...