Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
1.
Biostatistics ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39140988

ABSTRACT

In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.

2.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979274

ABSTRACT

Within-individual coupling between measures of brain structure and function evolves in development and may underlie differential risk for neuropsychiatric disorders. Despite increasing interest in the development of structure-function relationships, rigorous methods to quantify and test individual differences in coupling remain nascent. In this article, we explore and address gaps in approaches for testing and spatially localizing individual differences in intermodal coupling. We propose a new method, called CIDeR, which is designed to simultaneously perform hypothesis testing in a way that limits false positive results and improve detection of true positive results. Through a comparison across different approaches to testing individual differences in intermodal coupling, we delineate subtle differences in the hypotheses they test, which may ultimately lead researchers to arrive at different results. Finally, we illustrate the utility of CIDeR in two applications to brain development using data from the Philadelphia Neurodevelopmental Cohort.

3.
Int J Eat Disord ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953334

ABSTRACT

OBJECTIVE: Adults with binge-eating disorder (BED), compared with those without BED, demonstrate higher blood-oxygen-level-dependent (BOLD) response to food cues in reward-related regions of the brain. It is not known whether cognitive behavioral therapy (CBT) can reverse this reward system hyperactivation. This randomized controlled trial (RCT) assessed changes in BOLD response to binge-eating cues following CBT versus wait-list control (WLC). METHOD: Females with BED (N = 40) were randomized to CBT or WLC. Participants completed assessments at baseline and 16 weeks including measures of eating and appetite and functional magnetic resonance imaging (fMRI) to measure BOLD response while listening to personalized scripts of binge-eating and neutral-relaxing cues. Data were analyzed using general linear models with mixed effects. RESULTS: Overall retention rate was 87.5%. CBT achieved significantly greater reductions in binge-eating episodes than WLC (mean ± standard error decline of 14.6 ± 2.7 vs. 5.7 ± 2.8 episodes in the past 28 days, respectively; p = 0.03). CBT and WLC did not differ significantly in changes in neural responses to binge-eating stimuli during the fMRI sessions. Compared with WLC, CBT had significantly greater improvements in reward-based eating drive, disinhibition, and hunger as assessed by questionnaires (ps < 0.05). DISCUSSION: CBT was effective in reducing binge eating, but, contrary to our hypothesis, CBT did not improve BOLD response to auditory binge-eating stimuli in reward regions of the brain. Further studies are needed to assess mechanisms underlying improvements with CBT for BED. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03604172.

4.
Nat Protoc ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075309

ABSTRACT

Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.

5.
Mol Psychiatry ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048645

ABSTRACT

Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.

6.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949537

ABSTRACT

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Subject(s)
Aging , Brain , Magnetic Resonance Imaging , Humans , Adolescent , Female , Aged , Adult , Child , Young Adult , Male , Brain/diagnostic imaging , Brain/anatomy & histology , Brain/growth & development , Aged, 80 and over , Child, Preschool , Middle Aged , Aging/physiology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Neuroimaging/standards , Sample Size
7.
J Neurodev Disord ; 16(1): 35, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918700

ABSTRACT

BACKGROUND: Minor physical anomalies (MPAs) are congenital morphological abnormalities linked to disruptions of fetal development. MPAs are common in 22q11.2 deletion syndrome (22q11DS) and psychosis spectrum disorders (PS) and likely represent a disruption of early embryologic development that may help identify overlapping mechanisms linked to psychosis in these disorders. METHODS: Here, 2D digital photographs were collected from 22q11DS (n = 150), PS (n = 55), and typically developing (TD; n = 93) individuals. Photographs were analyzed using two computer-vision techniques: (1) DeepGestalt algorithm (Face2Gene (F2G)) technology to identify the presence of genetically mediated facial disorders, and (2) Emotrics-a semi-automated machine learning technique that localizes and measures facial features. RESULTS: F2G reliably identified patients with 22q11DS; faces of PS patients were matched to several genetic conditions including FragileX and 22q11DS. PCA-derived factor loadings of all F2G scores indicated unique and overlapping facial patterns that were related to both 22q11DS and PS. Regional facial measurements of the eyes and nose were smaller in 22q11DS as compared to TD, while PS showed intermediate measurements. CONCLUSIONS: The extent to which craniofacial dysmorphology 22q11DS and PS overlapping and evident before the impairment or distress of sub-psychotic symptoms may allow us to identify at-risk youths more reliably and at an earlier stage of development.


Subject(s)
Craniofacial Abnormalities , DiGeorge Syndrome , Psychotic Disorders , Humans , DiGeorge Syndrome/genetics , DiGeorge Syndrome/physiopathology , Psychotic Disorders/genetics , Female , Male , Adolescent , Child , Craniofacial Abnormalities/genetics , Young Adult , Adult , Machine Learning , Image Processing, Computer-Assisted
8.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38878300

ABSTRACT

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Subject(s)
Brain , Phenotype , Humans , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Cohort Studies , Female , Male
9.
Article in English | MEDLINE | ID: mdl-38869751

ABSTRACT

Accumulating evidence supports the presence of a general psychopathology dimension, the p factor ('p'). Despite growing interest in the p factor, questions remain about how p is assessed. Although multi-informant assessment of psychopathology is commonplace in clinical research and practice with children and adolescents, almost no research has taken a multi-informant approach to studying youth p or has examined the degree of concordance between parent and youth reports. Further, estimating p requires assessment of a large number of symptoms, resulting in high reporter burden that may not be feasible in many clinical and research settings. In the present study, we used bifactor multidimensional item response theory models to estimate parent- and adolescent-reported p in a large community sample of youth (11-17 years) and parents (N = 5,060 dyads). We examined agreement between parent and youth p scores and associations with assessor-rated youth global functioning. We also applied computerized adaptive testing (CAT) simulations to parent and youth reports to determine whether adaptive testing substantially alters agreement on p or associations with youth global functioning. Parent-youth agreement on p was moderate (r =.44) and both reports were negatively associated with youth global functioning. Notably, 7 out of 10 of the highest loading items were common across reporters. CAT reduced the average number of items administered by 57%. Agreement between CAT-derived p scores was similar to the full form (r =.40) and CAT scores were negatively correlated with youth functioning. These novel results highlight the promise and potential clinical utility of a multi-informant p factor approach.

10.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915591

ABSTRACT

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

11.
Psychol Med ; : 1-11, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828712

ABSTRACT

BACKGROUND: Neurocognitive dysfunction is a transdiagnostic finding in psychopathology, but relationships among cognitive domains and general and specific psychopathology dimensions remain unclear. This study aimed to examine associations between cognition and psychopathology dimensions in a large youth cohort. METHOD: The sample (N = 9350; age 8-21 years) was drawn from the Philadelphia Neurodevelopmental Cohort. Data from structured clinical interviews were modeled using bifactor confirmatory factor analysis (CFA), resulting in an overall psychopathology ('p') factor score and six orthogonal psychopathology dimensions: dysphoria/distress, obsessive-compulsive, behavioral/externalizing, attention-deficit/hyperactivity, phobias, and psychosis. Neurocognitive data were aggregated using correlated-traits CFA into five factors: executive functioning, memory, complex cognition, social cognition, and sensorimotor speed. We examined relationships among specific and general psychopathology dimensions and neurocognitive factors. RESULTS: The final model showed both overall and specific associations between cognitive functioning and psychopathology, with acceptable fit (CFI = 0.91; TLI = 0.90; RMSEA = 0.024; SRMR = 0.054). Overall psychopathology and most psychopathology dimensions were negatively associated with neurocognitive functioning (phobias [p < 0.0005], behavioral/externalizing [p < 0.0005], attention-deficit/hyperactivity [p < 0.0005], psychosis [p < 0.0005 to p < 0.05]), except for dysphoria/distress and obsessive-compulsive symptoms, which were positively associated with complex cognition (p < 0.05 and p < 0.01, respectively). CONCLUSION: By modeling a broad range of cognitive and psychopathology domains in a large, diverse sample of youth, we found aspects of neurocognitive functioning shared across clinical phenotypes, as well as domain-specific patterns. Findings support transdiagnostic examination of cognitive performance to parse variability in the link between neurocognitive functioning and clinical phenotypes.

12.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814872

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young Adult
13.
Mol Psychiatry ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811692

ABSTRACT

Social isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a genome-wide associations study (GWAS) was carried out to identify genetic variants that contribute specifically to social isolation behavior (SIB) in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP-based heritability estimate. Using the SIB GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with self-reported friendship scores, comprising items related to friendship quality and quantity, at age 12 and 18 to determine whether genetic predisposition manifests during childhood development. At age 18, friendship scores were associated with the SIB PRS, demonstrating that the genetic factors can predict related social traits in late adolescence. Linkage disequilibrium (LD) score correlation using the SIB GWAS demonstrated genetic correlations with autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), educational attainment, extraversion, and loneliness. However, no evidence of causality was found using a conservative Mendelian randomization approach between SIB and any of the traits in either direction. Genomic Structural Equation Modeling (SEM) revealed a common factor contributing to SIB, neuroticism, loneliness, MDD, and ASD, weakly correlated with a second common factor that contributes to psychiatric and psychotic traits. Our results show that SIB contributes a small heritable component, which is associated genetically with other social traits such as friendship as well as psychiatric disorders.

14.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38586012

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.

15.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664387

ABSTRACT

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Subject(s)
Connectome , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Adolescent , Female , Male , Young Adult , Child , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Child, Preschool , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/growth & development
16.
Schizophrenia (Heidelb) ; 10(1): 38, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503766

ABSTRACT

Schizophrenia is characterized by the misattribution of emotional significance to neutral faces, accompanied by overactivations of the limbic system. To understand the disorder's genetic and environmental contributors, investigating healthy first-degree relatives is crucial. However, inconsistent findings exist regarding their ability to recognize neutral faces, with limited research exploring the cerebral correlates of neutral face processing in this population. Thus, we here investigated brain responses to neutral face processing in healthy first-degree relatives through an image-based meta-analysis of functional magnetic resonance imaging studies. We included unthresholded group-level T-maps from 5 studies comprising a total of 120 first-degree relatives and 150 healthy controls. In sensitivity analyses, we ran a combined image- and coordinate-based meta-analysis including 7 studies (157 first-degree relatives, 207 healthy controls) aiming at testing the robustness of the results in a larger sample of studies. Our findings revealed a pattern of decreased brain responses to neutral faces in relatives compared with healthy controls, particularly in limbic areas such as the bilateral amygdala, hippocampus, and insula. The same pattern was observed in sensitivity analyses. These results contrast with the overactivations observed in patients, potentially suggesting that this trait could serve as a protective factor in healthy relatives. However, further research is necessary to test this hypothesis.

17.
Psychiatry Res ; 335: 115862, 2024 May.
Article in English | MEDLINE | ID: mdl-38554493

ABSTRACT

Large-scale studies and burdened clinical settings require precise, efficient measures that assess multiple domains of psychopathology. Computerized adaptive tests (CATs) can reduce administration time without compromising data quality. We examined feasibility and validity of an adaptive psychopathology measure, GOASSESS, in a clinical community-based sample (N = 315; ages 18-35) comprising three groups: healthy controls, psychosis, mood/anxiety disorders. Assessment duration was compared between the Full and CAT GOASSESS. External validity was tested by comparing how the CAT and Full versions related to demographic variables, study group, and socioeconomic status. The relationships between scale scores and criteria were statistically compared within a mixed-model framework to account for dependency between relationships. Convergent validity was assessed by comparing scores of the CAT and the Full GOASSESS using Pearson correlations. The CAT GOASSESS reduced interview duration by more than 90 % across study groups and preserved relationships to external criteria and demographic variables as the Full GOASSESS. All CAT GOASSESS scales could replace those of the Full instrument. Overall, the CAT GOASSESS showed acceptable psychometric properties and demonstrated feasibility by markedly reducing assessment time compared to the Full GOASSESS. The adaptive version could be used in large-scale studies or clinical settings for intake screening.


Subject(s)
Anxiety Disorders , Psychotic Disorders , Humans , Anxiety Disorders/psychology , Psychopathology , Mood Disorders/diagnosis , Anxiety , Psychometrics , Reproducibility of Results
18.
Mol Psychiatry ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336840

ABSTRACT

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.

19.
Compr Psychiatry ; 130: 152459, 2024 04.
Article in English | MEDLINE | ID: mdl-38330854

ABSTRACT

BACKGROUND: Adverse childhood experiences (ACEs) are associated with impaired cognitive function in adult life in the general population as well as in people living with schizophrenia (PLS). Research on cognitive function in PLS in low- and middle-income countries (LMIC) is, however, limited. The objectives of this study were to investigate the association between ACE types and various cognitive domains in a sample of PLS and matched medical controls, and to determine the moderating effect of group membership (PLS vs. medical controls) on these associations, in the South African setting. METHODS: Participants (n PLS = 520; n medical controls = 832) completed the Childhood Trauma Questionnaire-Short Form, the Structured Clinical Interview for DSM-IV (SCID-I), and the University of Pennsylvania Computerized Neurocognitive Battery (PennCNB). An efficiency or speed score was used to assess performance across 9 cognitive domains. The association between exposure to different ACE types and 9 cognitive domains was examined using partial correlations and multiple linear regression models, adjusting for sex, age and education years. Finally, potential moderating effects of group membership (PLS vs. medical controls) on the association between ACEs and cognitive domains were tested. RESULTS: In the entire sample, emotional and physical abuse predicted worse performance on sensorimotor and emotion identification domains. Also, emotional abuse was negatively associated with motor function, physical abuse was negatively associated with spatial processing, and physical neglect was negatively associated with face memory and emotion identification. In contrast, emotional neglect was related to better performance on abstraction and mental flexibility. No moderating effect of group membership was found on any of these associations. CONCLUSION: Exposure to ACEs was associated with social and non-social cognition in adulthood, although the magnitude of these relationships was small and similar between PLS and matched medical controls. The nature of these associations differed across ACE subtype, suggesting the need for a nuanced approach to studying a range of mechanisms that may underlie different associations. However, a number of ACE subtypes were associated with worse performance on emotional identification, indicating that some underlying mechanisms may have more transversal impact. These findings contribute to the sparse body of literature on ACEs and cognition in PLS in LMIC.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Schizophrenia , Self Report , Southern African People , Adult , Humans , Schizophrenia/complications , Schizophrenia/diagnosis , Cross-Sectional Studies , Cognition
20.
Schizophr Bull ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300759

ABSTRACT

BACKGROUND AND HYPOTHESIS: Based on a childhood intervention from ages 3 to 5 years that included additional fish consumption and which resulted in reduced schizotypal personality at age 23, we had previously hypothesized that omega-3 could reduce schizotypy. The current study tests the hypothesis that omega-3 supplementation reduces schizotypy in children. STUDY DESIGN: In this intention-to-treat, randomized, single-blind, stratified, factorial trial, a community sample of 290 children aged 11-12 years were randomized into Omega-3 Only, Cognitive Behavioral Therapy (CBT) Only, Omega-3 + CBT, and Control groups. Schizotypy was assessed using the SPQ-C (Schizotypal Personality Questionnaire for Children) at 0 months (baseline), 3 months (end of treatment), 6 months (3 months post-treatment), and 12 months (9 months post-treatment). STUDY RESULTS: A significant group × time interaction (P = .013) indicated that, compared with Controls, total schizotypy scores were reduced in both Omega-3 Only and Omega-3 + CBT groups immediately post-treatment (d = 0.56 and 0.47, respectively), and also 3 months after supplementation terminated (d = 0.49, d = 0.70). Stronger findings were observed for the interpersonal schizotypy factor, with both omega-3 groups showing reductions 9 months post-treatment compared with the CBT Only group. Schizotypy reductions were significantly stronger for those with higher dietary intake of omega-3 at intake. Sensitivity analyses confirmed findings. CONCLUSIONS: Results are unique in the field and suggest that omega-3 can help reduce schizotypal personality in community-residing children. From an epidemiological standpoint, if replicated and extended, these findings could have implications for early prevention of more significant schizotypal features developing later in adolescence. CLINICAL TRIAL REGISTRATION: "Healthy Brains & Behavior: Understanding and Treating Youth Aggression (HBB)." ClinicalTrials.gov Identifier: NCT00842439, https://clinicaltrials.gov/ct2/show/NCT00842439.

SELECTION OF CITATIONS
SEARCH DETAIL