Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14213, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902351

ABSTRACT

137Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that 137Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment. The Loire, Rhone, and Rhine rivers were the most affected by atmospheric fallout from the global deposition from nuclear tests. Rhine and Rhone also received significant fallout from the Chernobyl accident in 1986 and recorded significant 137Cs concentrations in their sediments over the 1970-1985 period due to the regulatory releases from the nuclear industries. The Meuse River was notably impacted in the early 1970s by industrial releases. In contrast, the Seine River display the lowest 137Cs concentrations regardless of the period. All the rivers responded similarly over time to atmospheric fallout on their catchment, underlying a rather homogeneous resilience capacity of these river systems to this source of contamination.

2.
Sci Total Environ ; 723: 137873, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32392680

ABSTRACT

The Rhone River is one of the most nuclearized river in the world. Radionuclide concentrations in water and suspended sediments transferred to the marine environment were intensively monitored in this river over the last decades (2002-2018). Over this period of time, >12 and 25 time integrating samples were collected each year in filtered waters and suspended sediments, respectively, and analyzed for their radionuclide contents at ultra-trace levels by using top performance analytical tools. While >60% of plutonium, americium, cesium, cobalt, silver, beryllium and actinium radioisotopes are carried by sedimentary particles, sodium, tritium, antimony and strontium are mainly exported as dissolved species (>90%) due to their low affinity with particles. Most natural radionuclides contents show low seasonal variation. No significant trends are observed over the last two decades for these elements, even for 40K widely used in fertilizers after the middle of the last century, indicating that the basin has currently converged towards geochemical equilibrium for all of them. In contrast, the concentrations of numerous anthropogenic radionuclides originating from nuclear industries significantly declined since the beginning of the 2000s. Assuming no change of the current anthropic and climatic pressures over the next decades, apparent periods, i.e. the time required for a reduction by half the concentrations in the downstream part of the Rhône River, would be close to 6 years for most artificial radionuclides, except for tritium and other artificial radionuclides conveyed to the river by soil leaching and erosion (90Sr, 241Am, plutonium isotopes) which would be far longer. Referring to regional referential backgrounds, only few anthropogenic radionuclides specifically produced by nuclear industries are still detectable at the downstream part of the Rhone River and excess contents of tritium, 238Pu and 241Am are observed in filtered waters.

3.
Sci Rep ; 9(1): 11487, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391539

ABSTRACT

Tritium of artificial origin was initially introduced to the environment from the global atmospheric fallout after nuclear weapons tests. Its level was increased in rainwaters by a factor 1000 during peak emissions in 1963 within the whole northern hemisphere. Here we demonstrate that tritium from global atmospheric fallout stored in sedimentary reservoir for decades as organically bound forms in recalcitrant organic matter while tritium released by nuclear industries in rivers escape from such storages. Additionally, we highlight that organically bound tritium concentrations in riverine sediments culminate several years after peaking emission in the atmosphere due to the transit time of organic matter from soils to river systems. These results were acquired by measuring both free and bound forms of tritium in a 70 year old sedimentary archive cored in the Loire river basin (France). Such tritium storages, assumed to be formed at the global scale, as well as the decadal time lag of tritium contamination levels between atmosphere and river systems have never been demonstrated until now. Our results bring new lights on tritium persistence and dynamics within the environment and demonstrate that sedimentary reservoir constitute both tritium sinks and potential delayed sources of mobile and bioavailable tritium for freshwaters and living organisms decades after atmospheric contamination.

4.
J Environ Radioact ; 192: 349-361, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30036775

ABSTRACT

The paper strives to identify through geostatistical simulations the parameters which build up a correlation between radionuclide activity concentrations measured on core samples and corresponding in situ total gamma count rates measured into boreholes drilled within the contaminated soil. This numerical exercise demonstrates that a linear relationship should exist between logarithmic values of in situ count rates and logarithmic values of activity concentrations when the contamination is strongly structured through space. A sensitivity analysis to some parameters (geostatistical range of the contamination structure, core sampling method, soil water content, multiple gamma-emitter contamination, etc.) is undertaken to identify which situations may impede the use of such a correlation. Then this approach is applied on Chernobyl measurements undertaken in 2015 and compared to the co-kriging method which considers the localization of the measurements and the additional measurements. It appears that co-kriging is a better estimator than linear regression, but the latter remains an acceptable way of estimating activity from gamma emitters and presents better results than lognormal regression. Therefore, total gamma logging measurements performed into boreholes of porous media contaminated by gamma-emitting radionuclides can be used for characterizing contamination and dealing with its spatial variability with the use of co-kriging.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Environmental Pollution/statistics & numerical data , Gamma Rays , Radioactive Fallout/analysis , Radioisotopes/analysis , Spatial Analysis , Uncertainty
5.
J Environ Radioact ; 139: 320-343, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25307776

ABSTRACT

Spatial distributions and temporal changes of radioactive fallout released by the Fukushima Dai-ichi Nuclear Power Plant accident have been investigated by two campaigns with three measurement schedules. The inventories (activities per unit area) of the radionuclides deposited onto ground soil were measured using portable gamma-ray spectrometers at nearly 1000 locations (at most) per measurement campaign. Distribution maps of the inventories of (134)Cs, (137)Cs, and (110m)Ag as of March, September, and December 2012 were constructed. No apparent temporal change of the radionuclide inventories was observed from March to December 2012. Weathering effects (e.g., horizontal mobility) were not noticeable during this period. Spatial dependence in the ratios of (134)Cs/(137)Cs and (110m)Ag/(137)Cs were observed in the Tohoku and Kanto regions. The detailed maps of (134)Cs and (137)Cs as of September 2012 and December 2012 were constructed using the relationship between the air dose rate and the inventory.


Subject(s)
Fukushima Nuclear Accident , Radioactive Fallout/analysis , Radioisotopes/analysis , Silver/analysis , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Geographic Mapping , Japan , Nuclear Power Plants , Radiation Monitoring , Seasons , Spectrometry, Gamma
6.
Health Phys ; 99(1): 39-48, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20539123

ABSTRACT

The aim of this work was to compare the distribution of 137Cs in organisms after chronic ingestion following different schedules. Rats were contaminated through drinking water containing 6,500 Bq L(-1) of 137Cs, starting either at birth, at weaning, or upon reaching adult age (13 wk). Animals were then sacrificed after different durations of ingestion. 137Cs content of organs and excreta were determined by gamma counting. A slight decrease in 137Cs elimination through urine was observed according to the age of animals. All organs tested showed similar 137Cs content, with the exception of striated muscles and the thyroid at certain ages, which showed the highest accumulation of 137Cs. The lowest 137Cs concentration was found in the blood, which acts as a transfer compartment after absorption in the intestine. Substructures of the central nervous system showed a homogeneous level of 137Cs accumulation, except for the olfactive bulbs. In these structures, an increased concentration of 137Cs was observed, suggesting a possible direct route of intake through the nasal epithelium. Overall, these results are in agreement with current models for the biokinetics of 137Cs. However, these results also suggest that the thyroid should be taken into account in future models of 137Cs biokinetics.


Subject(s)
Cesium Radioisotopes/administration & dosage , Cesium Radioisotopes/pharmacokinetics , Drinking , Food Contamination, Radioactive , Administration, Oral , Aging , Animals , Animals, Newborn , Intestinal Mucosa/metabolism , Nasal Mucosa/metabolism , Olfactory Bulb/metabolism , Organ Specificity , Rats , Rats, Sprague-Dawley , Relative Biological Effectiveness , Time Factors , Tissue Distribution , Weaning
7.
J Radioanal Nucl Chem ; 282(3): 731-735, 2009.
Article in English | MEDLINE | ID: mdl-26224898

ABSTRACT

Aerosol samples collected on filter media were analyzed using HPGe detectors employing varying background-reduction techniques in order to experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS). In this way, realistic estimates of the impact of low-background methodology on the sensitivity obtained in systems such as the IMS were assessed. The current detectability requirement of stations in the IMS is 30 µBq/m3 of air for 140Ba, which would imply ~106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. One week of decay reduces the intrinsic background from radon daughters in the sample allowing much higher sensitivity measurement of relevant isotopes, including 131I. An experiment was conducted in which decayed filter samples were measured at a variety of underground locations using Ultra-Low Background (ULB) gamma spectroscopy technology. The impacts of the decay and ULB are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL