Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7170, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505053

ABSTRACT

Due to the overall high costs, technical replicates are usually omitted in RNA-seq experiments, but several methods exist to generate them artificially. Bootstrapping reads from FASTQ-files has recently been used in the context of other NGS analyses and can be used to generate artificial technical replicates. Bootstrapping samples from the columns of the expression matrix has already been used for DNA microarray data and generates a new artificial replicate of the whole experiment. Mixing data of individual samples has been used for data augmentation in machine learning. The aim of this comparison is to evaluate which of these strategies are best suited to study the reproducibility of differential expression and gene-set enrichment analysis in an RNA-seq experiment. To study the approaches under controlled conditions, we performed a new RNA-seq experiment on gene expression changes upon virus infection compared to untreated control samples. In order to compare the approaches for artificial replicates, each of the samples was sequenced twice, i.e. as true technical replicates, and differential expression analysis and GO term enrichment analysis was conducted separately for the two resulting data sets. Although we observed a high correlation between the results from the two replicates, there are still many genes and GO terms that would be selected from one replicate but not from the other. Cluster analyses showed that artificial replicates generated by bootstrapping reads produce it p values and fold changes that are close to those obtained from the true data sets. Results generated from artificial replicates with the approaches of column bootstrap or mixing observations were less similar to the results from the true replicates. Furthermore, the overlap of results among replicates generated by column bootstrap or mixing observations was much stronger than among the true replicates. Artificial technical replicates generated by bootstrapping sequencing reads from FASTQ-files are better suited to study the reproducibility of results from differential expression and GO term enrichment analysis in RNA-seq experiments than column bootstrap or mixing observations. However, FASTQ-bootstrapping is computationally more expensive than the other two approaches. The FASTQ-bootstrapping may be applicable to other applications of high-throughput sequencing.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA-Seq , Reproducibility of Results , Sequence Analysis, RNA/methods
2.
Viruses ; 13(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34578285

ABSTRACT

Reassortment is a viral genome-segment recomposition known for many viruses, including the orthobunyaviruses. The co-infection of a host cell with two viruses of the same serogroup, such as the Bunyamwera orthobunyavirus and the Batai orthobunyavirus, can give rise to novel viruses. One example is the Ngari virus, which has caused major outbreaks of human infections in Central Africa. This study aimed to investigate the potential for reassortment of Bunyamwera orthobunyavirus and the Batai orthobunyavirus during co-infection studies and the replication properties of the reassortants in different mammalian and insect cell lines. In the co-infection studies, a Ngari-like virus reassortant and a novel reassortant virus, the Batunya virus, arose in BHK-21 cells (Mesocricetus auratus). In contrast, no reassortment was observed in the examined insect cells from Aedes aegypti (Aag2) and Aedes albopictus (U4.4 and C6/36). The growth kinetic experiments show that both reassortants are replicated to higher titers in some mammalian cell lines than the parental viruses but show impaired growth in insect cell lines.


Subject(s)
Aedes/cytology , Bunyamwera virus/genetics , Genome, Viral , Mammals/virology , Orthobunyavirus/genetics , RNA, Viral/genetics , Reassortant Viruses/genetics , Aedes/virology , Animals , Bunyamwera virus/isolation & purification , Cell Line , Chlorocebus aethiops , Cricetinae , Orthobunyavirus/isolation & purification , Phylogeny , Reassortant Viruses/isolation & purification , Vero Cells
3.
Microorganisms ; 9(4)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919617

ABSTRACT

Tick-borne encephalitis (TBE) is a severe neurologic disease in Europe and Asia. Disease expression ranges from asymptomatic to severe neurological clinical pictures, involving meningitis, encephalitis, meningoencephalitis and potentially fatal outcome. Humans mostly become infected with TBE virus (TBEV) by the bite of an infected tick. Gastrointestinal (GI) symptoms in humans are mainly attributed to the first viremic phase of TBEV infection with unspecific symptoms and/or resulting from severe neurological impairment of the central nervous system (CNS). We used the subcutaneous TBEV-infection of C57BL/6 mice as a model to analyze GI complications of TBE. We observed the acute distension and segmental dilation of the intestinal tract in 10 of 22 subcutaneously infected mice. Histological analysis revealed an intramural enteric ganglioneuritis in the myenteric and submucosal plexus of the small and large intestine. The numbers of infiltrating macrophages and CD3+ T lymphocytes correlated with the severity of ganglioneuritis, indicating an immune-mediated pathogenesis due to TBEV-infection of the enteric plexus. Our study demonstrates that the inflammation of enteric intramural ganglia presents to be a common feature in TBEV-infected mice. Accordingly, the results of this mouse model emphasize that GI disease manifestation and consequences for long-term sequelae should not be neglected for TBEV-infections in humans and require further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...