Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 91(5)2015 May.
Article in English | MEDLINE | ID: mdl-25873457

ABSTRACT

In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.


Subject(s)
Alteromonadaceae/metabolism , Alteromonadaceae/physiology , Photobacterium/metabolism , Photobacterium/physiology , Pressure , Adaptation, Physiological/physiology , Biomass , Fatty Acids/metabolism , Hydrostatic Pressure , Isotope Labeling , Oceans and Seas , Phospholipids/metabolism , Pilot Projects
2.
AMB Express ; 4: 77, 2014.
Article in English | MEDLINE | ID: mdl-25401077

ABSTRACT

The blowout of the Deepwater Horizon in the Gulf of Mexico in 2010 occurred at a depth of 1500 m, corresponding to a hydrostatic pressure of 15 MPa. Up to now, knowledge about the impact of high pressure on oil-degrading bacteria has been scarce. To investigate how the biodegradation of crude oil and its components is influenced by high pressures, like those in deep-sea environments, hydrocarbon degradation and growth of two model strains were studied in high-pressure reactors. The alkane-degrading strain Rhodococcus qingshengii TUHH-12 grew well on n-hexadecane at 15 MPa at a rate of 0.16 h(-1), although slightly slower than at ambient pressure (0.36 h(-1)). In contrast, the growth of the aromatic hydrocarbon degrading strain Sphingobium yanoikuyae B1 was highly affected by elevated pressures. Pressures of up to 8.8 MPa had little effect on growth of this strain. However, above this pressure growth decreased and at 12 MPa or more no more growth was observed. Nevertheless, S. yanoikuyae continued to convert naphthalene at pressure >12 MPa, although at a lower rate than at 0.1 MPa. This suggests that certain metabolic functions of this bacterium were inhibited by pressure to a greater extent than the enzymes responsible for naphthalene degradation. These results show that high pressure has a strong influence on the biodegradation of crude oil components and that, contrary to previous assumptions, the role of pressure cannot be discounted when estimating the biodegradation and ultimate fate of deep-sea oil releases such as the Deepwater Horizon event.

3.
Environ Sci Technol ; 42(14): 5241-6, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18754375

ABSTRACT

In a laboratory-based test series, seven experiments along a simulated Pacific hydrotherm at 152 degrees W, 40 degrees N were carried out to measure the rise velocities of liquefied CO2 droplets under (clathrate) hydrate forming conditions. The impact of a hydrate skin on the rising behavior was investigated by comparing the results with those from outside the field of hydrate stability at matching buoyancy. A thermostatted high-pressure tank was used to establish conditions along the natural oceanic hydrotherm. Under P-/T-conditions allowing hydrate formation, the majority of the droplets quickly developed a skin of CO2 hydrate upon contact with seawater. Rise rates of these droplets support the parametrization by Chen et al. (Tellus 2003, 55B, 723-730), which is based on empirical equations developed to match momentum of hydrate covered, deformed droplets. Our data do not support other parametrizations recently suggested in the literature. In the experiments from 5.7 MPa, 4.8 oC to 11.9 MPa, 2.8 degrees C positive and negative deviations from predicted rise rates occurred, which we propose were caused by lacking hydrate formation and reflect intact droplet surface mobility and droplet shape oscillations, respectively. This interpretation is supported by rise rates measured at P-/T-conditions outside the hydrate stability field atthe same liquid CO2-seawater density difference (delta rho) matching the rise rates of the deviating data within the stability field. The results also show that droplets without a hydrate skin ascend up to 50% faster than equally buoyant droplets with a hydrate skin. This feature has a significant impact on the vertical pattern of dissolution of liquid CO2 released into the ocean. The experiments and data presented considerably reduce the uncertainty of the parametrization of CO2 droplet rise velocity, which in the past emerged partly from their scarcity and contradictions in constraints of earlier experiments.


Subject(s)
Carbon Dioxide/chemistry , Seawater/chemistry , Diffusion , Fossil Fuels , Greenhouse Effect , Solubility , Thermodynamics
4.
Environ Sci Technol ; 38(17): 4640-8, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15461174

ABSTRACT

Microphytobenthic polymers mediate intertidal sediment erosion processes, through biostabilization and modifying the nature of eroded floc material. The latter is of key importance with respect to sediment transport dynamics, including floc aggregation and particle deposition. In this study, eroded floc material was analyzed by video imaging, alongside novel application of in-line laser holography (ILH). The erosion of engineered sediment was compared to that of natural estuarine sediments. Both video and holography showed an increase in floc size eroded from engineered cohesive clay sediment as a function of sediment dewatering and sediment polymer content. Estuarine sediment showed a curvilinear increase in floc size as a function of both microphytobenthic biomass and sediment colloidal polymer content when measured by video analysis. Holography did not show these functions for floc size due to temporal limitations of the current ILH methodology. An interaction of sediment polymer binding and sediment desiccation was observed for engineered sediments and, most notably, for estuarine cohesive sediments. In conclusion, engineered sediments were not accurate analogues for natural intertidal sediments, failing to reproduce eroded floc material similar to that from estuarine cohesive sediment. The size of eroded floc from estuarine sediments is a function of the complex interaction between biological and physicochemical processes, primarily algal colloidal polymer and desiccation. Holography demonstrated an excellent potential for the high-resolution imaging of eroded material but is limited by temporal constraints; the solution to this would be the development of real-time holographic video.


Subject(s)
Geologic Sediments/chemistry , Holography/methods , Lasers , Colloids , Flocculation , Holography/instrumentation , Particle Size , Time Factors , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL