Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 8: 101379, 2021.
Article in English | MEDLINE | ID: mdl-34430275

ABSTRACT

Pinyon and juniper expansion into sagebrush ecosystems is one of the major challenges facing land managers in the Great Basin. Effective pinyon and juniper treatment requires maps that accurately and precisely depict tree location and degree of woodland development so managers can target restoration efforts for early stages of pinyon and juniper expansion. However, available remotely sensed layers that cover a regional spatial extent lack the spatial resolution or accuracy to meet this need. Accuracy can be improved using object-based image analysis methods such as automated feature extraction, which has proven successful in accurately classifying land cover at the site-level but to date has yet to be applied to regional extents due to time and computational limitations. Using Feature Analyst™, we implement our framework with 1-m2 reference imagery provided by National Agricultural Imagery Program to classify conifers across Nevada and northeastern California. Our resulting binary conifer map has an overall accuracy of 86%. We discuss the advantages to accuracy and precision our framework provides compared to other classification methods. ● This framework allows automated feature extraction for large quantities of data and very high spatial resolution imagery ● It leverages supervised learning ● It results in high accuracy maps for regional spatial extents.

2.
Ecol Appl ; 28(4): 878-896, 2018 06.
Article in English | MEDLINE | ID: mdl-29441692

ABSTRACT

Managers require quantitative yet tractable tools that identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin is compromised by strongly interacting stressors of conifer expansion, annual grass invasion, and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and may yield relatively little ecological benefit to sage-grouse if implemented without estimating how Sage-grouse may respond to treatments, or do not consider underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species. Here, we describe example applications of a spatially explicit conservation planning tool (CPT) to inform prioritization of: (1) removal of conifers (i.e., pinyon-juniper); and (2) wildfire restoration aimed at improving habitat conditions for the Bi-State Distinct Population Segment of Sage-grouse along the California-Nevada state line. The CPT measures ecological benefits to sage-grouse for a given management action through a composite index comprised of resource selection functions and estimates of abundance and space use. For pinyon-juniper removal, we simulated changes in land-cover composition following the removal of sparse trees with intact understories, and ranked treatments on the basis of changes in ecological benefits per dollar-unit of cost. For wildfire restoration, we formulated a conditional model to simulate scenarios for land cover changes (e.g., sagebrush to annual grass) given estimated fire severity and underlying ecosystem processes influencing resilience to disturbance and resistance to invasion by annual grasses. For both applications, we compared CPT rankings to land cover changes along with sagebrush resistance and resilience metrics. Model results demonstrated how the CPT can be an important step in identifying management projects that yield the highest quantifiable benefit to Sage-grouse while avoiding costly misallocation of resources, and highlight the importance of considering changes in sage-grouse ecological response and factors influencing sagebrush ecosystem resilience to disturbance and resistance to invasion. This unique framework can be adopted to help inform other management questions aimed at improving habitat for other species across sagebrush and other ecosystems.


Subject(s)
Conservation of Natural Resources/methods , Galliformes , Animal Distribution , Animals , California , Ecosystem , Fires , Models, Theoretical , Nevada
3.
J Appl Ecol ; 53(1): 83-95, 2016 02.
Article in English | MEDLINE | ID: mdl-26877545

ABSTRACT

Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus, hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...