Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Neurobiol ; 38(8): 1539-1550, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30288631

ABSTRACT

In Parkinson's disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1-2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.


Subject(s)
Extracellular Vesicles/metabolism , alpha-Synuclein/metabolism , Biomarkers/metabolism , Cells, Cultured , Exosomes/metabolism , Green Fluorescent Proteins/metabolism , Humans , Mutant Proteins/metabolism , tau Proteins/metabolism
2.
J Neuroinflammation ; 14(1): 241, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29228971

ABSTRACT

BACKGROUND: Due to its neurotoxic properties, oligomeric alpha-synuclein (α-syn) has been suggested as an attractive target for passive immunization against Parkinson's disease (PD). In mouse models of PD, antibody treatment has been shown to lower the levels of pathogenic α-syn species, including oligomers, although the mechanisms of action remain unknown. We have previously shown that astrocytes rapidly engulf α-syn oligomers that are intracellularly stored, rather than degraded, resulting in impaired mitochondria. METHODS: The aim of the present study was to investigate if the accumulation of α-syn in astrocytes can be affected by α-syn oligomer-selective antibodies. Co-cultures of astrocytes, neurons, and oligodendrocytes were derived from embryonic mouse cortex and exposed to α-syn oligomers or oligomers pre-incubated with oligomer-selective antibodies. RESULTS: In the presence of antibodies, the astrocytes displayed an increased clearance of the exogenously added α-syn, and consequently, the α-syn accumulation in the culture was markedly reduced. Moreover, the addition of antibodies rescued the astrocytes from the oligomer-induced mitochondrial impairment. CONCLUSIONS: Our results demonstrate that oligomer-selective antibodies can prevent α-syn accumulation and mitochondrial dysfunction in cultured astrocytes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Astrocytes/metabolism , Mitochondria/drug effects , alpha-Synuclein/antagonists & inhibitors , Animals , Inclusion Bodies , Intracellular Space/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Parkinson Disease
3.
Mol Cell Neurosci ; 82: 143-156, 2017 07.
Article in English | MEDLINE | ID: mdl-28450268

ABSTRACT

The presence of Lewy bodies, mainly consisting of aggregated α-synuclein, is a pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The α-synuclein inclusions are predominantly found in neurons, but also appear frequently in astrocytes. However, the pathological significance of α-synuclein inclusions in astrocytes and the capacity of glial cells to clear toxic α-synuclein species remain unknown. In the present study we investigated uptake, degradation and toxic effects of oligomeric α-synuclein in a co-culture system of primary neurons, astrocytes and oligodendrocytes. Alpha-synuclein oligomers were found to co-localize with the glial cells and the astrocytes were found to internalize particularly large amounts of the protein. Following ingestion, the astrocytes started to degrade the oligomers via the lysosomal pathway but, due to incomplete digestion, large intracellular deposits remained. Moreover, the astrocytes displayed mitochondrial abnormalities. Taken together, our data indicate that astrocytes play an important role in the clearance of toxic α-synuclein species from the extracellular space. However, when their degrading capacity is overburdened, α-synuclein deposits can persist and result in detrimental cellular processes.


Subject(s)
Astrocytes/metabolism , Mitochondria/metabolism , Oligodendroglia/metabolism , alpha-Synuclein/metabolism , Animals , Coculture Techniques/methods , Cytoplasm/metabolism , Intracellular Space/metabolism , Lewy Bodies/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Parkinson Disease/metabolism
4.
Cell Mol Neurobiol ; 37(1): 121-131, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26961542

ABSTRACT

Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson's disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen-antibody complexes.


Subject(s)
Antibodies, Monoclonal/metabolism , Extracellular Space/metabolism , Receptors, IgG/physiology , alpha-Synuclein/metabolism , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...