Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Eur J Pharm Sci ; 183: 106386, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736067

ABSTRACT

An in-depth understanding of the properties of gastric fluid(s) prior to an in vivo pharmacokinetic investigation can vastly improve predictions of in vivo performance. Previously, properties of animal and human gastric fluids have been characterized with varying methods. Unfortunately, characterization has often not been thorough, and some properties, such as density and viscosity, have not been reported. Here, human, porcine and canine gastric fluids were harvested and characterized for pH, viscosity, surface tension, density, and osmolarity. We found that the variability of pH and surface tension between dogs was significantly higher than the variability between pigs, and, furthermore, gastric fluids collected from the same canine species (beagles) housed in two different countries (Denmark and China) had surprisingly different pH values. Next, an in vitro dissolution study in diluted gastric fluids from each species was performed using minitablets containing ibuprofen. Human gastric fluids and porcine gastric fluids showed similar dissolution profiles and corroborated well with biorelevant human Fasted State Simulated Gastric Fluid (FaSSGF). In contrast, differences in canine gastric fluids caused highly variable dissolution results. We systematically compared our findings to those in the literature and based on this evaluation, propose obtaining aspirates from the animals used for in vivo studies to ensure knowledge on the fluid properties affecting the performance of the formulated drug in question.


Subject(s)
Stomach , Animals , Dogs , Humans , Swine , Drug Compounding , Solubility , China , Administration, Oral
3.
PLoS One ; 10(5): e0126420, 2015.
Article in English | MEDLINE | ID: mdl-25997164

ABSTRACT

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.


Subject(s)
Ultracentrifugation/methods , Ultracentrifugation/standards , Calibration , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...