Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Chemosphere ; 321: 138133, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36791815

ABSTRACT

The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances. The negative slope between log Kd and pH became steeper with increasing perfluorocarbon chain length of the PFAS (r2 = 0.75, p ≤ 0.05). Organic carbon (OC) alone was a poor predictor of the partitioning for all PFASs, except for FOSA (r2 = 0.71), and the OC-normalized PFAS partitioning, as derived from organic soil materials, underestimated PFAS sorption to the soils. Multiple linear regression suggested sorption contributions (p ≤ 0.05) from OC for perfluorooctane sulfonate (PFOS) and FOSA, and Fe/Al (hydr)oxides for PFOS, FOSA, and perfluorodecanoate (PFDA). FOSA was the only substance under study for which there was a statistically significant correlation between its binding and soil texture (silt + clay). To predict PFAS sorption, the surface net charge of the soil organic matter fraction of all soils was calculated using the Stockholm Humic Model. When calibrated against charge-dependent PFAS sorption to a peat (Oe) material, the derived model significantly underestimated the measured Kd values for 10 out of 11 soils. To conclude, additional sorbents, possibly including silicate minerals, contribute to the binding of PFASs in soil. More research is needed to develop geochemical models that can accurately predict PFAS sorption in soils.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Soil/chemistry , Alkanesulfonic Acids/chemistry , Carbon , Fluorocarbons/analysis , Hydrogen-Ion Concentration
2.
Chemosphere ; 297: 134167, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35276112

ABSTRACT

The charge- and concentration-dependent sorption behavior of a range of per- and polyfluoroalkyl substances (PFASs) was studied for three organic soil samples with different organic matter quality, one Spodosol Oe horizon (Mor Oe) and two Sphagnum peats with different degrees of decomposition (Peat Oi and Peat Oe). Sorption to the two peat materials was, on average, four times stronger compared to that onto the Mor Oe material. In particular, longer-chained PFASs were more strongly bound by the two peats as compared to the Mor Oe sample. The combined results of batch sorption experiments and 13C NMR spectroscopy suggested sorption to be positively related to the content of carbohydrates (i.e., O-alkyl carbon). Sorption of all PFAS subclasses was inversely related to the pH value in all soils, with the largest pH effects being observed for perfluoroalkyl carboxylates (PFCAs) with C10 and C11 perfluorocarbon chain lengths. Experimentally determined sorption isotherms onto the poorly humified Peat Oi did not deviate significantly from linearity for most substances, while for the Mor Oe horizon, sorption nonlinearity was generally more pronounced. This work should prove useful in assessing PFAS sorption and leaching in organic soil horizons within environmental risk assessment.


Subject(s)
Fluorocarbons , Soil Pollutants , Carbon , Carboxylic Acids , Fluorocarbons/analysis , Soil/chemistry
3.
Environ Toxicol Chem ; 41(6): 1540-1554, 2022 06.
Article in English | MEDLINE | ID: mdl-35262220

ABSTRACT

Extraction of soil samples with dilute CaCl2 solution in a routinely performed batch test has potential to be used in site-specific assessment of ecotoxicological risks at metal-contaminated sites. Soil extracts could potentially give a measure of the concentration of bioavailable metals in the soil solution, thereby including effects of soil properties and contaminant "aging." We explored the possibility of using a 0.001 M CaCl2 batch test combined with biotic ligand models (BLMs) for assessment of ecotoxicity in soils. Concentrations of Cu2+ and Zn2+ in soil extracts were linked to responses in ecotoxicity tests (microbial processes, plants, and invertebrates) previously performed on metal-spiked soils. The batch test data for soils were obtained by spiking archived soil materials using the same protocol as in the original studies. Effective concentration values based on free metal concentrations in soil extracts were related to pH by linear regressions. Finally, field-contaminated soils were used to validate model performance. Our results indicate a strong pH-dependent toxicity of the free metal ions in the soil extracts, with R2 values ranging from 0.54 to 0.93 (median 0.84), among tests and metals. Using pH-adjusted Cu2+ and Zn2+ concentrations in soil extracts, the toxic responses in spiked soils and field-contaminated soils were similar, indicating a potential for the calibrated models to assess toxic effects in field-contaminated soils, accounting for differences in soil properties and effects of contaminant "aging." Consequently, evaluation of a standardized 0.001 M CaCl2 batch test with a simplified BLM can provide the basis for an easy-to-use tool for site-specific risk assessment of metal toxicity to soil organisms. Environ Toxicol Chem 2022;41:1540-1554. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Soil Pollutants , Soil , Calcium Chloride , Copper/toxicity , Ligands , Metals/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity , Zinc/toxicity
4.
Environ Sci Technol ; 56(5): 3076-3084, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35129969

ABSTRACT

The use of bismuth in the society has steadily increased during the last decades, both as a substitute for lead in hunting ammunition and various metallurgical applications, as well as in a range of consumer products. At the same time, the environmental behavior of bismuth is largely unknown. Here, the binding of bismuth(III) to organic soil material was investigated using extended X-ray absorption spectroscopy (EXAFS) and batch experiments. Moreover, the capacity of suwannee river fulvic acid (SRFA) to enhance the solubility of metallic bismuth was studied in a long-term (2 years) equilibration experiment. Bismuth(III) formed exceptionally strong complexes with the organic soil material, where >99% of the added bismuth(III) was bound by the solid phase, even at pH 1.2. EXAFS data suggest that bismuth(III) was bound to soil organic matter as a dimeric Bi3+ complex where one carboxylate bridges two Bi3+ ions, resulting in a unique structural stability. The strong binding to natural organic matter was verified for SRFA, dissolving 16.5 mmol Bi per gram carbon, which largely exceeds the carboxylic acid group density of this compound. Our study shows that bismuth(III) will most likely be associated with natural organic matter in soils, sediments, and waters.


Subject(s)
Bismuth , Soil , Bismuth/chemistry , Rivers/chemistry , Solubility , X-Ray Absorption Spectroscopy
5.
Water Res ; 189: 116585, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33171296

ABSTRACT

Colloids and nanoparticles leached from agricultural land are major carriers of potentially bioavailable nutrients with high mobility in the environment. Despite significant research efforts, accurate knowledge of macronutrients in colloids and nanoparticles is limited. We used multi-elemental synchrotron X-ray fluorescence (XRF) microscopy with multivariate spatial analysis and X-ray atomic absorption near-edge structure (XANES) spectroscopy at the P and S K-edges, to study the speciation of P and S in two fractions of leached particles, >0.45 and <0.45 µm respectively, collected from four tile-drained agricultural sites in Sweden. P K-edge XANES showed that organic P, followed by P adsorbed to surfaces of aluminum-bearing particles were the most common forms of leached P. Iron-bound P (Fe-P) forms were generally less abundant (0-30 % of the total P). S K-edge XANES showed that S was predominantly organic, and a relatively high abundance of reduced S species suggests that redox conditions were adverse to the persistence of P bound to Fe-bearing colloids in the leachates. Acid ammonium-oxalate extractions suggested that P associated with Al and Fe (Al-P and Fe-P) in most cases could be explained by the adsorption capacity of non-crystalline (oxalate-extractable) oxides of Al and Fe. These results improve our understanding of particulate P and S speciation in the vadose zone and helps in developing effective technologies for mitigating colloidal driven eutrophication of water bodies near agricultural land.


Subject(s)
Soil Pollutants , Soil , Phosphorus , Soil Pollutants/analysis , Sulfur , Sweden , X-Ray Absorption Spectroscopy , X-Rays
6.
Environ Sci Technol ; 54(24): 15722-15730, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33244971

ABSTRACT

An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.


Subject(s)
Fluorocarbons , Adsorption , Alkanesulfonates , Ferric Compounds
7.
Chemosphere ; 255: 126937, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32402882

ABSTRACT

Phosphate competes with arsenate for sorption sites on poorly crystalline iron and aluminum (hydr)oxides. The competition has implications e.g. for the management of arsenic-contaminated soil and water. Phosphate competition with arsenate on mixed phases containing both iron and aluminum (hydr)oxides has rarely been investigated. Here, the phosphate competition with arsenate on mixtures of poorly crystalline aluminum hydroxide (Alhox) and ferrihydrite (Fh), was investigated in batch experiments at pH 6.5. X-ray absorption spectroscopy (XAS) was performed on the phosphorus and arsenic K edges, which offered a unique insight in the partitioning of arsenate and phosphate on mixed Alhox-Fh sorbents. Under the studied conditions the sorption capacity of the mixed sorbents (per mol Al or Fe) increased at higher Alhox to Fh ratios. The XAS measurements provided direct evidence that phosphate competed more effectively with arsenate for sorption sites on Alhox than on Fh. For example, in a mixture with 50% of both sorbents and with similar additions of arsenate and phosphate, 71% of the oxyanions adsorbed on Fh and 46% on Alhox were arsenate. Consequently, phosphate may mobilize arsenate more easily from mixed iron-aluminum matrices that are rich in aluminum.


Subject(s)
Aluminum Hydroxide/chemistry , Arsenates/chemistry , Phosphates/chemistry , Adsorption , Aluminum/chemistry , Arsenic/chemistry , Ferric Compounds , Iron/chemistry , Oxides/chemistry , Water
8.
Environ Sci Technol ; 54(8): 4922-4931, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32212656

ABSTRACT

Anaerobic conditions mobilize phosphorus (P) in soils and sediments. The role of anaerobic microsites in well-drained soil on P migration is unknown. This study aimed to identify mechanisms that control field-scale vertical P mobility as affected by organic fertilizers that may trigger variable redox conditions. Soils were sampled at different depths in a well-drained Luvisol after 19 years of application of organic fertilizers. The concentrations of P and manganese (Mn) in 0.45-µm-filtered extracts (10-3 M CaCl2) of field-moist soil samples were strongly correlated (r = + 0.95), and both peaked in and below the compacted plough pan, suggesting that reductive processes mobilize P. Waterlogged soil incubations confirmed that anaerobic respiration comobilizes Mn and P and that this leads to the release of colloidal P and iron (Fe). The long-term applications of farmyard manure and immature compost enhanced the concentrations of Mn, Fe, and aluminum (Al) in the soil solution of subsurface samples, whereas less such effect was found under the application of more stable organic fertilizers. Farmyard manure application significantly enhanced soil P stocks below the plough layer despite a small P input. Overall, multiple lines of evidence confirm that anaerobic respiration, sparked by labile organic matter, mobilizes P in this seemingly well-drained soil.


Subject(s)
Phosphorus , Soil , Agriculture , Anaerobiosis , Fertilizers/analysis , Manganese/analysis , Manure
9.
Sci Total Environ ; 715: 136671, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32050319

ABSTRACT

Elevated Arsenic (As) and Fluoride (F) concentrations in groundwater have been studied in the shallow aquifers of northeastern of La Pampa province, in the Chaco-Pampean plain, Argentina. The source of As and co-contaminants is mainly geogenic, from the weathering of volcanic ash and loess (rhyolitic glass) that erupted from the Andean volcanic range. In this study we have assessed the groundwater quality in two semi-arid areas of La Pampa. We have also identified the spatial distribution of As and co-contaminants in groundwater and determined the major factors controlling the mobilization of As in the shallow aquifers. The groundwater samples were circum-neutral to alkaline (7.4 to 9.2), oxidizing (Eh ~0.24 V) and characterized by high salinity (EC = 456-11,400 µS/cm) and Na+-HCO3- water types in recharge areas. Carbonate concretions ("tosca") were abundant in the upper layers of the shallow aquifer. The concentration of total As (5.6 to 535 µg/L) and F (0.5 to 14.2 mg/L) were heterogeneous and exceeded the recommended WHO Guidelines and the Argentine Standards for drinking water. The predominant As species were arsenate As(V) oxyanions, determined by thermodynamic calculations. Arsenic was positively correlated with bicarbonate (HCO3-), fluoride (F), boron (B) and vanadium (V), but negatively correlated with iron (Fe), aluminium (Al), and manganese (Mn), which were present in low concentrations. The highest amount of As in sediments was from the surface of the dry lake. The mechanisms for As mobilization are associated with multiple factors: geochemical reactions, hydrogeological characteristics of the local aquifer and climatic factors. Desorption of As(V) at high pH, and ion competition for adsorption sites are considered the principal mechanisms for As mobilization in the shallow aquifers. In addition, the long-term consumption of the groundwater could pose a threat for the health of the local community and low cost remediation techniques are required to improve the drinking water quality.

10.
Environ Sci Technol ; 53(18): 10723-10731, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31436974

ABSTRACT

Arsenic (As) is reported to be effectively sorbed onto natural organic matter (NOM) via thiol coordination and polyvalent metal cation-bridged ternary complexation. However, the extent of sorption via complexation with oxygen-containing functional groups of NOM is poorly understood. By equilibrating arsenite, arsenate, and monothioarsenate with purified model-peat, followed by As K-edge X-ray absorption spectroscopic analysis, this study shows that complexation with oxygen-containing functional groups can be an additional or alternative mode of As sorption to NOM. The extent of complexation was highest for arsenite, followed by monothioarsenate and arsenate. Complexation was higher at pH 7.0 compared to 4.5 for arsenite and arsenate and vice versa for monothioarsenate because of partial transformation to arsenite at pH 4.5. Modeling of the As K-edge extended X-ray absorption fine structure data revealed that As···C interatomic distances were relatively longer in arsenate- (2.83 ± 0.01 Å) and monothioarsenate-treated peat (2.80 ± 0.02 Å) compared to arsenite treatments (2.73 ± 0.01 Å). This study suggests that arsenite was predominantly complexed with carboxylic groups, whereas arsenate and monothioarsenate were complexed with alcoholic groups of the peat. This study further implies that in systems, where NOM is the major sorbent, arsenate and monothioarsenate can have higher mobility than arsenite.


Subject(s)
Arsenic , Arsenites , Arsenates , Oxygen , X-Ray Absorption Spectroscopy
11.
Chemosphere ; 222: 453-460, 2019 May.
Article in English | MEDLINE | ID: mdl-30716548

ABSTRACT

Laboratory-based leaching tests are frequently used for in situ risk assessments of contaminant leaching to groundwater and surface waters. This study evaluated the ability of three standardised leaching tests to assess leaching of lead (Pb), zinc (Zn), arsenic (As) and antimony (Sb) from four intact soil profiles, by considering particulate (0.45-8 µm; percolation test), colloidal (10 kDa-0.45 µm) and truly dissolved (<10 kDa) fractions of these elements. Deionised water was used as the percolation test leachant, while either deionised water or 1 mM CaCl2 was used in batch tests. Data from an irrigation experiment were used as reference. The results indicated that in percolation tests, leachate should be collected at a liquid:solid ratio (L/S) range of 2-10, instead of 0-0.5 or 0.5-2. Even at L/S = 2-10, the percolation test overestimated total Pb concentration, mainly because of greater mobilisation of particle-bound Pb, but appeared suitable for categorising soils into high/low risk with respect to mobilisation of particulate and colloidal contaminants. The batch test performed better with CaCl2 than with deionised water when standard membrane filtration (0.45 µm) was used, as the high Ca2+ concentration reduced colloidal mobilisation, avoiding overestimation of concentrations of elements such as Pb. However, the higher Ca2+ concentration and lower pH could result in overestimated concentrations of weakly sorbed elements, e.g. Zn.


Subject(s)
Hydrology/methods , Metals, Heavy/analysis , Soil Pollutants/analysis , Arsenic/analysis , Calcium Chloride/chemistry , Groundwater , Hydrology/standards , Soil , Water Pollutants, Chemical/analysis
12.
Adv Colloid Interface Sci ; 265: 1-13, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30685738

ABSTRACT

Vanadium (V), although serving as an important component of industrial activities, has bioinorganic implications to pose highly toxic hazards to humans and animals. Soils and sediments throughout the world exhibit wide ranges of vanadium concentrations. Although vanadium toxicity varies between different species, it is mainly controlled by soil redox potential (EH). Nonetheless, knowledge of the redox geochemistry of vanadium lags in comparison to what is known about other potentially toxic elements (PTEs). In particular, the redox-induced speciation and mobilization of vanadium in soils and sediments and the associated risks to the environment have not been reviewed to date. Therefore, this review aims to address 1) the content and geochemical fate of vanadium in soils and sediments, 2) its redox-induced release dynamics, 3) redox-mediated chemical reactions between vanadium and soil organic and inorganic colloidal materials in soil solution, 4) its speciation in soil solution and soil-sediments, and 5) the use of advanced geochemical and spectroscopic techniques to investigate these complex systems. Vanadium (+5) is the most mobile and toxic form of its species while being the thermodynamically stable valence state in oxic environments, while vanadium (+3) might be expected to be predominant under euxinic (anoxic and sulfidic) conditions. Vanadium can react variably in response to changing soil EH: under anoxic conditions, the mobilization of vanadium can decrease because vanadium (+5) can be reduced to relatively less soluble vanadium (+4) via inorganic reactions such as with H2S and organic matter and by metal-reducing microorganisms. On the other hand, dissolved concentrations of vanadium can increase at low EH in many soils to reveal a similar pattern to that of Fe, which may be due to the reductive dissolution of Fe(hydr)oxides and the release of the associated vanadium. Those differences in vanadium release dynamics might occur as a result of the direct impact of EH on vanadium speciation in soil solution and soil sediments, and/or because of the EH-dependent changes in soil pH, chemistry of (Fe)(hydr)oxides, and complexation with soil organic carbon. Release dynamics of vanadium in soils may also be affected positively by soil pH and the release of aromatic organic compounds. X-ray absorption spectroscopy (XAS) is a powerful tool to investigate the speciation of vanadium present in soil. X-ray absorption near edge structure (XANES) is often used to constrain the average valence state of vanadium in soils and sediments, and in limited cases extended X-ray absorption fine structure (EXAFS) analysis has been used to determine the average molecular coordination environment of vanadium in soil components. In conclusion, this review presents the state of the art about the redox geochemistry of vanadium and thus contributes to a better understanding of the speciation, potential mobilization, and environmental hazards of vanadium in the near-surface environment of uplands, wetlands, and agricultural ecosystems as affected by various colloidal particles. Further research is needed to elucidate the geochemistry and speciation of vanadium in the dissolved, colloidal, and soil sediments phases, including the determination of factors that control the redox geochemistry of vanadium.

13.
Environ Sci Technol ; 52(23): 13698-13707, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30199245

ABSTRACT

Mofettes (natural geogenic CO2 exhalations) represent excellent sites to study the behavior of Cu in soils and the co-occurrence of different mobilization and immobilization processes since they exhibit both a gradient in redox conditions (oxic to permanently anoxic) and in soil organic matter (SOM; low to high contents). Soil and pore water samples from an 18 m-transect over a mofette showed a complex behavior of Cu, with highest mobility in the transition between oxic and anoxic conditions. Cu(II) sorption experiments on SOM-rich topsoil revealed that Cu mobility under oxic conditions was confined by adsorption to SOM while in the oxygen-free mofette center reduction and precipitation of sulfides was the dominating Cu-sequestering process. In transition areas with low amounts of oxygen (<10%), there was no mineral precipitation, instead high dissolved-to-soil organic carbon ratios strongly increased Cu mobility. Our results show that low stability of SOM formed under oxygen-limited conditions leads to increased Cu mobility unless sulfur-reducing conditions cause Cu sequestration by sulfide precipitation. The interplay of these (im)mobilization processes and especially the unexpectedly high mobility under suboxic conditions have to be considered when assessing Cu mobility along spatial or temporal redox gradients, e.g., at contamination sites or periodically flooded soils.


Subject(s)
Copper , Soil Pollutants , Carbon , Oxidation-Reduction , Soil
14.
Environ Sci Technol ; 52(13): 7317-7326, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29847919

ABSTRACT

In peatlands, arsenite was reported to be effectively sequestered by sulfhydryl groups of natural organic matter. To which extent porewater arsenite can react with reduced sulfur to form thioarsenates and how this affects arsenic sequestration in peatlands is unknown. Here, we show that, in the naturally arsenic-enriched peatland Gola di Lago, Switzerland, up to 93% of all arsenic species in surface and porewaters were thioarsenates. The dominant species, monothioarsenate, likely formed from arsenite and zerovalent sulfur-containing species. Laboratory incubations with sulfide-reacted, purified model peat showed increasing total arsenic sorption with decreasing pH from 8.5 to 4.5 for both, monothioarsenate and arsenite. However, X-ray absorption spectroscopy revealed no binding of monothioarsenate via sulfhydryl groups. The sorption observed at pH 4.5 was acid-catalyzed dissociation of monothioarsenate, forming arsenite. The lower the pH and the more sulfhydryl sites, the more arsenite sorbed which in turn shifted equilibrium toward further dissociation of monothioarsenate. At pH 8.5, monothioarsenate was stable over 41 days. In conclusion, arsenic can be effectively sequestered by sulfhydryl groups in anoxic, slightly acidic environments where arsenite is the only arsenic species. At neutral to slightly alkaline pH, monothioarsenate can form and its slow transformation into arsenite and low affinity to sulfhydryl groups suggest that this species is mobile in such environments.


Subject(s)
Arsenic , Arsenates , Kinetics , Soil , Switzerland
15.
Chemosphere ; 207: 183-191, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29793030

ABSTRACT

Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al3+, Ca2+ and Na+. Often, the organic C-normalized partitioning coefficients (KOC) showed a negative relationship to both pH (Δlog KOC/ΔpH = -0.32 ±â€¯0.11 log units) and the SOM bulk net negative charge (Δlog KOC = -1.41 ±â€¯0.40 per log unit molc g-1). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log KOC units per CF2 moiety for C3-C10 PFCAs and C4, C6, and C8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C5-C8 PFCAs and C6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C9-C11 and C13 PFCAs, C8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant.


Subject(s)
Cations/chemistry , Fluorocarbons/chemistry , Soil/chemistry , Water Pollutants, Chemical/chemistry , Fluorocarbons/analysis , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
16.
Chemosphere ; 196: 556-565, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29329088

ABSTRACT

While metal sorption mechanisms have been studied extensively for soil surface horizons, little information exists for subsoils, for example Spodosol Bs horizons. Here the sorption of cadmium(II), copper(II) and lead(II) to seven Bs horizons from five sites was studied. Extended X-ray absorption fine structure (EXAFS) spectroscopy showed that cadmium(II) and lead(II) were bound as inner-sphere complexes to organic matter. Addition of o-phosphate (to 1 µmol l-1) did not result in any significant enhancement of metal sorption, nor did it influence EXAFS speciation. An assemblage model using the SHM and CD-MUSIC models overestimated metal sorption for six out of seven soil samples. To agree with experimental results, substantial decreases (up to 8-fold) had to be made for the fraction 'active organic matter', fHS, while the point-of-zero charge (PZC) of ferrihydrite had to be increased. The largest decreases of fHS were found for the soils with the lowest ratio of pyrophosphate-to oxalate-extractable Al (Alpyp/Alox), suggesting that in these soils, humic and fulvic acids were to a large extent inaccessible for metal sorption. The low reactivity of ferrihydrite towards lead(II) can be explained by potential spillover effects from co-existing allophane, but other factors such as ferrihydrite crystallisation could not be ruled out. In conclusion, organic matter was the predominant sorbent for cadmium(II), copper(II) and lead(II). However, for lead(II) the optimised model suggests additional, but minor, contributions from Fe (hydr)oxide surface complexes. These results will be important to correctly model metal sorption in spodic materials.


Subject(s)
Adsorption , Metals/chemistry , Soil Pollutants/analysis , Soil/chemistry , Benzopyrans/chemistry , Cadmium/chemistry , Copper/chemistry , Ferric Compounds/chemistry , Humic Substances , Lead/chemistry , Phosphates/chemistry , X-Ray Absorption Spectroscopy
17.
Environ Sci Pollut Res Int ; 25(8): 7391-7400, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29280098

ABSTRACT

The phosphorus (P) removal of five combinations of dual filters consisting of blast furnace slag (BFS), argon oxygen decarburisation slag (AOD) and electric arc furnace slag (EAF) was evaluated in column experiments with domestic waste water. The columns were fed with waste water for 24 days. The column with only EAF had the best P removal performance (above 93% throughout the experiment). The speciation of the bound P was evaluated by P K-edge X-ray absorption near-edge structure (XANES) spectroscopy. In all five columns, the main P species of the slag packed in the outlet chamber was amorphous calcium phosphate (ACP). In samples from the inlet chambers, the contributions from crystalline Ca phosphates, P adsorbed on gibbsite and P adsorbed on ferrihydrite were usually much greater, suggesting a shift of P removal mechanism as the waste water travelled from the inlet to the outlet. The results provide strong evidence that P was predominantly removed by the slags through the formation of ACP. However, as the pH decreased with time due to the progressively lower dissolution of alkaline silicate minerals from the slag, the ACP was rendered unstable and hence redissolved, changing the P speciation. It is suggested that this process strongly affected the lifespan of the slag filters. Of the slags examined, EAF slag had the best P removal characteristics and BFS the worst, which probably reflected different dissolution rates of alkaline silicates in the slags.


Subject(s)
Industrial Waste/analysis , Minerals/analysis , Phosphorus/analysis , Wastewater/analysis , Adsorption , Minerals/chemistry , Oxygen , Phosphorus/chemistry , Wastewater/chemistry , X-Ray Absorption Spectroscopy
18.
Chemosphere ; 189: 709-716, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28972909

ABSTRACT

Chromium is a common soil contaminant and, although it has been studied widely, questions about its speciation and dissolutions kinetics remain unanswered. We combined information from an irrigation experiment performed with intact soil columns with data from batch experiments to evaluate solubility and mobilization mechanisms of Cr(III) in a historically contaminated soil (>65 years). Particulate and colloidal Cr(III) forms dominated transport in this soil, but their concentrations were independent of irrigation intensity (2-20 mm h-1). Extended X-ray absorption fine structure (EXAFS) measurements indicated that Cr(III) associated with colloids and particles, and with the solid phase, mainly existed as dimeric hydrolyzed Cr(III) bound to natural organic matter. Dissolution kinetics of this species were fast (≤1 day) at low pH (<3) and slightly slower (≤5 days) at neutral pH. Furthermore, it proved possible to describe the solubility of the dimeric Cr(III) organic matter complex with a geochemical equilibrium model using only generic binding parameters, opening the way for use of geochemical models in risk assessments of Cr(III)-contaminated sites.


Subject(s)
Chromium/analysis , Soil Pollutants/analysis , Environmental Monitoring , Environmental Pollution , Hydrogen-Ion Concentration , Kinetics , Soil/chemistry , Solubility , X-Rays
19.
Chemosphere ; 168: 925-932, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27816283

ABSTRACT

The toxicity of vanadium in soils depends on its sorption to soil components. Here we studied the vanadate(V) sorption properties of 26 mineral soils. The data were used to optimise parameters for a Freundlich equation with a pH term. Vanadium K-edge XANES spectroscopy for three selected soils confirmed that the added vanadate(V) had accumulated mostly as adsorbed vanadate(V) on Fe and Al hydrous oxides, with only minor contributions from organically complexed vanadium(IV). Data on pH-dependent V solubility for seven soils showed that on average 0.36 H+ accompanied each V during adsorption and desorption. The resulting model provided reasonable fits to the V sorption data, with r2 > 0.99 for 20 of 26 soils. The observed KdS value, i.e. the ratio of total to dissolved V, was strongly dependent on V addition and soil; it varied between 3 and 4 orders of magnitude. The model was used to calculate the Freundlich sorption strength (FSS), i.e. the amount of V sorbed at [V] = 2.5 mg L-1, in the concentration range of observed plant toxicities. A close relationship between FSS and oxalate-extractable Fe and Al was found (r2 = 0.85) when one acidic soil was removed from the regression. The FSS varied between 27 and 8718 mg V kg-1, showing that the current environmental guidelines can be both under- and overprotective for vanadium.


Subject(s)
Models, Theoretical , Soil Pollutants/chemistry , Vanadium/chemistry , Adsorption , Minerals/chemistry , Soil/chemistry , Solubility , Vanadates/chemistry
20.
Environ Sci Technol ; 50(14): 7453-60, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27305455

ABSTRACT

The solubility of silver(I) in many soils is controlled by complexation reactions with organic matter. In this work we have compared the ability of isolated humic and fulvic acids to bind silver(I) with that of mor and peat materials. One new data set for Suwannee River Fulvic Acid was produced, which was consistent with published data sets for isolated fulvic and humic acids. The ability of soil materials to bind silver(I) was studied as a function of pH in the range 2.5-5.0, at a wide range of silver(I)-to-soil ratios (10(-4.2) - 10(-1.9) mol kg(-1)). By calibrating the Stockholm Humic Model on the humic and fulvic acids data sets, we showed that binding of silver(I) to both types of soil materials was much stronger (up to 2 orders of magnitude) than predicted from the silver(I) binding properties of the isolated humic materials. Thus, the approach taken for many other metals, that is, to model solubility in soils by using metal and proton binding parameters derived from isolated humic and fulvic acids, cannot be used for silver(I). One possible explanation for the discrepancy could be that silver(I) predominately interacted with various biomolecules in the soil samples, instead of humic- and fulvic-acid type materials.


Subject(s)
Humic Substances , Soil , Benzopyrans/chemistry , Silver , Soil Pollutants , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...