Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
RNA ; 29(10): 1610-1620, 2023 10.
Article in English | MEDLINE | ID: mdl-37491319

ABSTRACT

Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.


Subject(s)
Archaea , RNA , Archaea/genetics , Methanosarcina/genetics , Methanol , Bacteria/genetics , Ribosomes/genetics
2.
RNA ; 28(5): 623-644, 2022 05.
Article in English | MEDLINE | ID: mdl-35115361

ABSTRACT

The ribosomal RNAs, along with their substrates the transfer RNAs, contain the most highly conserved nucleotides in all of biology. We have assembled a database containing structure-based alignments of sequences of the small-subunit rRNAs from organisms that span the entire phylogenetic spectrum, to identify the nucleotides that are universally conserved. In its simplest (bacterial and archaeal) forms, the small-subunit rRNA has ∼1500 nt, of which we identify 140 that are absolutely invariant among the 1961 species in our alignment. We examine the positions and detailed structural and functional interactions of these universal nucleotides in the context of a half century of biochemical and genetic studies and high-resolution structures of ribosome functional complexes. The vast majority of these nucleotides are exposed on the subunit interface surface of the small subunit, where the functional processes of the ribosome take place. However, only 40 of them have been directly implicated in specific ribosomal functions, such as contacting the tRNAs, mRNA, or translation factors. The roles of many other invariant nucleotides may serve to constrain the positions and orientations of those nucleotides that are directly involved in function. Yet others can be rationalized by participation in unusual noncanonical tertiary structures that may uniquely allow correct folding of the rRNA to form a functional ribosome. However, there remain at least 50 nt whose universal conservation is not obvious, serving as a metric for the incompleteness of our understanding of ribosome structure and function.


Subject(s)
Nucleotides , RNA, Ribosomal , Nucleic Acid Conformation , Nucleotides/genetics , Phylogeny , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Ribosomes/genetics
3.
Nat Commun ; 12(1): 3494, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108470

ABSTRACT

Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,647 templates representing the majority of known structured RNAs. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world's largest RNA 2D structure dataset. The software is amenable to community expansion, and is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt .


Subject(s)
Computational Biology/methods , RNA/chemistry , Databases, Nucleic Acid , Nucleic Acid Conformation , RNA, Untranslated/chemistry , Reproducibility of Results , Sequence Analysis, RNA , Software
4.
Genome Biol Evol ; 12(10): 1694-1710, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32785681

ABSTRACT

The ribosome's common core, comprised of ribosomal RNA (rRNA) and universal ribosomal proteins, connects all life back to a common ancestor and serves as a window to relationships among organisms. The rRNA of the common core is similar to rRNA of extant bacteria. In eukaryotes, the rRNA of the common core is decorated by expansion segments (ESs) that vastly increase its size. Supersized ESs have not been observed previously in Archaea, and the origin of eukaryotic ESs remains enigmatic. We discovered that the large ribosomal subunit (LSU) rRNA of two Asgard phyla, Lokiarchaeota and Heimdallarchaeota, considered to be the closest modern archaeal cell lineages to Eukarya, bridge the gap in size between prokaryotic and eukaryotic LSU rRNAs. The elongated LSU rRNAs in Lokiarchaeota and Heimdallarchaeota stem from two supersized ESs, called ES9 and ES39. We applied chemical footprinting experiments to study the structure of Lokiarchaeota ES39. Furthermore, we used covariation and sequence analysis to study the evolution of Asgard ES39s and ES9s. By defining the common eukaryotic ES39 signature fold, we found that Asgard ES39s have more and longer helices than eukaryotic ES39s. Although Asgard ES39s have sequences and structures distinct from eukaryotic ES39s, we found overall conservation of a three-way junction across the Asgard species that matches eukaryotic ES39 topology, a result consistent with the accretion model of ribosomal evolution.


Subject(s)
Archaea/chemistry , Evolution, Molecular , Models, Molecular , RNA Folding , RNA, Ribosomal/chemistry , Archaea/genetics , RNA, Ribosomal/genetics
5.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27794554

ABSTRACT

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Subject(s)
Databases, Nucleic Acid , RNA, Untranslated/chemistry , Animals , Genomics , Humans , Nucleotides/chemistry , Sequence Analysis, RNA , Species Specificity
6.
Nucleic Acids Res ; 43(W1): W15-23, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26048960

ABSTRACT

The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.


Subject(s)
RNA, Ribosomal/chemistry , Sequence Alignment/methods , Sequence Analysis, RNA , Software , Internet , Nucleic Acid Conformation
8.
Nucleic Acids Res ; 43(Database issue): D123-9, 2015 01.
Article in English | MEDLINE | ID: mdl-25352543

ABSTRACT

The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.


Subject(s)
Databases, Nucleic Acid , RNA, Untranslated/chemistry , Chromosome Mapping , Humans , Internet , RNA, Untranslated/genetics , Sequence Analysis, RNA
10.
RNA Biol ; 11(3): 254-72, 2014.
Article in English | MEDLINE | ID: mdl-24713659

ABSTRACT

A few years before I started my graduate studies, Carl Woese was establishing a collaboration with his friend, colleague, and my PhD advisor, Harry Noller. Carl was introducing comparative methods to Harry's lab to determine the secondary structure for the 16S and 23S rRNAs. In addition to an experimental project that had minimal to no success, I was attempting to predict an RNA secondary structure from a single sequence. I determined after a few months that the complexity of RNA folding was much greater than ever anticipated. Ten lessons were learned about the dynamics of RNA folding, the comparative methods used to accurately predict the RNAs secondary structure and the beginnings of its tertiary structure, the use of comparative methods to reveal much more than ever anticipated about RNA structure, other applications beyond RNA structure, and the lessons about the process of scientific discovery.


Subject(s)
Computational Biology/methods , RNA, Ribosomal/chemistry , Nucleic Acid Conformation , Phylogeny , RNA Folding , RNA, Ribosomal/genetics
11.
PLoS One ; 9(4): e93664, 2014.
Article in English | MEDLINE | ID: mdl-24691270

ABSTRACT

Helices are an essential element in defining the three-dimensional architecture of structured RNAs. While internal basepairs in a canonical helix stack on both sides, the ends of the helix stack on only one side and are exposed to the loop side, thus susceptible to fraying unless they are protected. While coaxial stacking has long been known to stabilize helix ends by directly stacking two canonical helices coaxially, based on analysis of helix-loop junctions in RNA crystal structures, herein we describe helix capping, topological stacking of a helix end with a basepair or an unpaired nucleotide from the loop side, which in turn protects helix ends. Beyond the topological protection of helix ends against fraying, helix capping should confer greater stability onto the resulting composite helices. Our analysis also reveals that this general motif is associated with the formation of tertiary structure interactions. Greater knowledge about the dynamics at the helix-junctions in the secondary structure should enhance the prediction of RNA secondary structure with a richer set of energetic rules and help better understand the folding of a secondary structure into its three-dimensional structure. These together suggest that helix capping likely play a fundamental role in driving RNA folding.


Subject(s)
Nucleic Acid Conformation , RNA Folding , RNA/chemistry , Base Pairing , Crystallography, X-Ray
12.
Appl Environ Microbiol ; 79(6): 1803-12, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23291551

ABSTRACT

Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.


Subject(s)
Host Specificity , Hymenoptera/microbiology , Lactobacillus/classification , Lactobacillus/isolation & purification , Animals , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Lactobacillus/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
BMC Syst Biol ; 7 Suppl 4: S13, 2013.
Article in English | MEDLINE | ID: mdl-24565058

ABSTRACT

BACKGROUND: The analysis of RNA sequences, once a small niche field for a small collection of scientists whose primary emphasis was the structure and function of a few RNA molecules, has grown most significantly with the realizations that 1) RNA is implicated in many more functions within the cell, and 2) the analysis of ribosomal RNA sequences is revealing more about the microbial ecology within all biological and environmental systems. The accurate and rapid alignment of these RNA sequences is essential to decipher the maximum amount of information from this data. METHODS: Two computer systems that utilize the Gutell lab's RNA Comparative Analysis Database (rCAD) were developed to align sequences to an existing template alignment available at the Gutell lab's Comparative RNA Web (CRW) Site. Multiple dimensions of cross-indexed information are contained within the relational database--rCAD, including sequence alignments, the NCBI phylogenetic tree, and comparative secondary structure information for each aligned sequence. The first program, CRWAlign-1 creates a phylogenetic-based sequence profile for each column in the alignment. The second program, CRWAlign-2 creates a profile based on phylogenetic, secondary structure, and sequence information. Both programs utilize their profiles to align new sequences into the template alignment. RESULTS: The accuracies of the two CRWAlign programs were compared with the best template-based rRNA alignment programs and the best de-novo alignment programs. We have compared our programs with a total of eight alternative alignment methods on different sets of 16S rRNA alignments with sequence percent identities ranging from 50% to 100%. Both CRWAlign programs were superior to these other programs in accuracy and speed. CONCLUSIONS: Both CRWAlign programs can be used to align the very extensive amount of RNA sequencing that is generated due to the rapid next-generation sequencing technology. This latter technology is augmenting the new paradigm that RNA is intimately implicated in a significant number of functions within the cell. In addition, the use of bacterial 16S rRNA sequencing in the identification of the microbiome in many different environmental systems creates a need for rapid and highly accurate alignment of bacterial 16S rRNA sequences.


Subject(s)
Computational Biology/methods , Phylogeny , RNA/genetics , Sequence Alignment/methods , Templates, Genetic , Base Sequence , Databases, Genetic , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
14.
PLoS One ; 7(6): e38320, 2012.
Article in English | MEDLINE | ID: mdl-22761677

ABSTRACT

BACKGROUND: The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. PRINCIPAL FINDINGS: The identification of 14 additional small mitochondrial transcripts from P. falciparum and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. SIGNIFICANCE: All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.


Subject(s)
Plasmodium falciparum/genetics , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , RNA/genetics , Ribosomes/genetics , Base Sequence , Gene Expression Profiling , Genome, Mitochondrial , Humans , Molecular Sequence Data , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , RNA, Mitochondrial , RNA, Protozoan/chemistry , RNA, Protozoan/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Sequence Homology, Nucleic Acid
15.
PLoS One ; 7(5): e38203, 2012.
Article in English | MEDLINE | ID: mdl-22693601

ABSTRACT

While the majority of the ribosomal RNA structure is conserved in the three major domains of life--archaea, bacteria, and eukaryotes, specific regions of the rRNA structure are unique to at least one of these three primary forms of life. In particular, the comparative secondary structure for the eukaryotic SSU rRNA contains several regions that are different from the analogous regions in the bacteria. Our detailed analysis of two recently determined eukaryotic 40S ribosomal crystal structures, Tetrahymena thermophila and Saccharomyces cerevisiae, and the comparison of these results with the bacterial Thermus thermophilus 30S ribosomal crystal structure: (1) revealed that the vast majority of the comparative structure model for the eukaryotic SSU rRNA is substantiated, including the secondary structure that is similar to both bacteria and archaea as well as specific for the eukaryotes, (2) resolved the secondary structure for regions of the eukaryotic SSU rRNA that were not determined with comparative methods, (3) identified eukaryotic helices that are equivalent to the bacterial helices in several of the hypervariable regions, (4) revealed that, while the coaxially stacked compound helix in the 540 region in the central domain maintains the constant length of 10 base pairs, its two constituent helices contain 5+5 bp rather than the 6+4 bp predicted with comparative analysis of archaeal and eukaryotic SSU rRNAs.


Subject(s)
Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Fungal/chemistry , RNA, Ribosomal/chemistry , Ribosome Subunits, Small , Saccharomyces cerevisiae/cytology , Tetrahymena thermophila/cytology , Thermus thermophilus/cytology , Base Sequence , Crystallography, X-Ray , Molecular Sequence Data , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Species Specificity
16.
PLoS One ; 7(6): e39383, 2012.
Article in English | MEDLINE | ID: mdl-22724009

ABSTRACT

Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary interactions, early studies revealed that phylogenetic event counting methods are more sensitive and provide extra confidence in the prediction of base pairs. We developed a novel and powerful phylogenetic events counting method (PEC) for quantifying positional covariation with the Gutell lab's new RNA Comparative Analysis Database (rCAD). The PEC and MI-based methods each identify unique base pairs, and jointly identify many other base pairs. In total, both methods in combination with an N-best and helix-extension strategy identify the maximal number of base pairs. While covariation methods have effectively and accurately predicted RNAs secondary structure, only a few tertiary structure base pairs have been identified. Analysis presented herein and at the Gutell lab's Comparative RNA Web (CRW) Site reveal that the majority of these latter base pairs do not covary with one another. However, covariation analysis does reveal a weaker although significant covariation between sets of nucleotides that are in proximity in the three-dimensional RNA structure. This reveals that covariation analysis identifies other types of structural constraints beyond the two nucleotides that form a base pair.


Subject(s)
Computational Biology/methods , RNA, Ribosomal/chemistry , Algorithms , Base Pairing , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 5S/chemistry , RNA, Ribosomal, 5S/genetics
17.
Article in English | MEDLINE | ID: mdl-24772376

ABSTRACT

The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at http://www.rna.ccbb.utexas.edu/SAE/2F/CRWAlign.

18.
J Mol Biol ; 413(2): 473-83, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21889515

ABSTRACT

RNA is directly associated with a growing number of functions within the cell. The accurate prediction of different RNA higher-order structures from their nucleic acid sequences will provide insight into their functions and molecular mechanics. We have been determining statistical potentials for a collection of structural elements that is larger than the number of structural elements determined with experimentally determined energy values. The experimentally derived free energies and the statistical potentials for canonical base-pair stacks are analogous, demonstrating that statistical potentials derived from comparative data can be used as an alternative energetic parameter. A new computational infrastructure-RNA Comparative Analysis Database (rCAD)-that utilizes a relational database was developed to manipulate and analyze very large sequence alignments and secondary-structure data sets. Using rCAD, we determined a richer set of energetic parameters for RNA fundamental structural elements including hairpin and internal loops. A new version of RNAfold was developed to utilize these statistical potentials. Overall, these new statistical potentials for hairpin and internal loops integrated into the new version of RNAfold demonstrated significant improvements in the prediction accuracy of RNA secondary structure.


Subject(s)
Databases, Nucleic Acid , Models, Statistical , RNA/chemistry , Algorithms , Base Pairing , Base Sequence , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Sequence Analysis, RNA , Thermodynamics
19.
PLoS One ; 6(4): e18768, 2011.
Article in English | MEDLINE | ID: mdl-21625625

ABSTRACT

Evolutionary relationships among organisms are commonly described by using a hierarchy derived from comparisons of ribosomal RNA (rRNA) sequences. We propose that even on the level of a single rRNA molecule, an organism's evolution is composed of multiple pathways due to concurrent forces that act independently upon different rRNA degrees of freedom. Relationships among organisms are then compositions of coexisting pathway-dependent similarities and dissimilarities, which cannot be described by a single hierarchy. We computationally test this hypothesis in comparative analyses of 16S and 23S rRNA sequence alignments by using a tensor decomposition, i.e., a framework for modeling composite data. Each alignment is encoded in a cuboid, i.e., a third-order tensor, where nucleotides, positions and organisms, each represent a degree of freedom. A tensor mode-1 higher-order singular value decomposition (HOSVD) is formulated such that it separates each cuboid into combinations of patterns of nucleotide frequency variation across organisms and positions, i.e., "eigenpositions" and corresponding nucleotide-specific segments of "eigenorganisms," respectively, independent of a-priori knowledge of the taxonomic groups or rRNA structures. We find, in support of our hypothesis that, first, the significant eigenpositions reveal multiple similarities and dissimilarities among the taxonomic groups. Second, the corresponding eigenorganisms identify insertions or deletions of nucleotides exclusively conserved within the corresponding groups, that map out entire substructures and are enriched in adenosines, unpaired in the rRNA secondary structure, that participate in tertiary structure interactions. This demonstrates that structural motifs involved in rRNA folding and function are evolutionary degrees of freedom. Third, two previously unknown coexisting subgenic relationships between Microsporidia and Archaea are revealed in both the 16S and 23S rRNA alignments, a convergence and a divergence, conferred by insertions and deletions of these motifs, which cannot be described by a single hierarchy. This shows that mode-1 HOSVD modeling of rRNA alignments might be used to computationally predict evolutionary mechanisms.


Subject(s)
Computational Biology/methods , Evolution, Molecular , RNA, Ribosomal/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Base Sequence , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics
20.
Article in English | MEDLINE | ID: mdl-22983261

ABSTRACT

A new and emerging paradigm in molecular biology is revealing that RNA is implicated in nearly every aspect of the metabolism in the cell. To enhance our understanding of the function of these RNA molecules in the cell, it is essential that we have a complete understanding of their higher-order structures. While many computational tools have been developed to predict and analyse these higher-order RNA structures, few are able to visualize them for analytical purposes. In this paper, we present an interactive visualization tool of the secondary structure of RNA, named RNA2DMap. This program enables multiple-dimensions of information about RNA structure to be selected, customized and displayed to visually identify patterns and relationships. RNA2DMap facilitates the comparative analysis and understanding of RNAs that cannot be readily obtained with other graphical or text output from computer programs. Three use cases are presented to illustrate how RNA2DMap aids structural analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...