Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 5(21): 5859-5869, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881718

ABSTRACT

This work examines the effect of changing the ratio of different surfactants in single-core iron-based nanoparticles with respect to their specific absorption rate in the context of magnetic hyperthermia and cellular uptake by human umbilical vein endothelial cells (HUVEC). Three types of magnetic nanoparticles were synthesized by separately adding oleic acid or oleylamine or a mixture of both (oleic acid/oleylamine) as surfactants. A carefully controlled thermal decomposition synthesis process led to monodispersed nanoparticles with a narrow size distribution. Spherical-shaped nanoparticles were mainly obtained for those synthesized with oleic acid, while the shape changed upon adding oleylamine. The combined use of oleic acid and oleylamine as surfactants in single-core iron-based nanoparticles resulted in a substantial saturation magnetization, reaching up to 140 A m2 kg-1 at room temperature. The interplay between these surfactants played a crucial role in achieving this high magnetic saturation. By modifying the surface of the magnetic nanoparticles using a mixture of two surfactants, the magnetic fluid hyperthermia heating rate was significantly improved compared to using a single surfactant type. This improvement can be attributed to the larger effective anisotropy achieved through the modification with both (oleic acid/oleylamine). The mixture of surfactants enhances the control of interparticle distance and influences the strength of dipolar interactions, ultimately leading to enhanced heating efficiency. Functionalization of the oleic acid-coated nanoparticles with trimethoxysilane results in the formation of a core-shell structure Fe@Fe3O4, showing exchange bias (EB) associated with the exchange anisotropy between the shell and the core. The biomedical relevance of our synthesized Fe@Fe3O4 nanoparticles was demonstrated by their efficient uptake by human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. This remarkable cellular uptake highlights the potential of these nanoparticles in biomedical applications.

2.
Nanoscale Adv ; 2(10): 4777-4784, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132934

ABSTRACT

In this work, the reduction of iron oxide γ-Fe2O3 nanoparticles by hydrogen at high pressures is studied. Increasing the hydrogen pressure enables reduction of γ-Fe2O3 to α-Fe at significantly lower temperatures. At low pressures, a temperature of 390 °C is necessary whereas at 530 bar complete reduction can be realized at temperatures as low as 210 °C. This leads to significant improvement in the final particle morphology, maintaining high surface-to-volume ratio of the nanoparticles with an average size of 47 ± 5 nm which is close to that of the precursor γ-Fe2O3. Neck formation, coalescence and growth during reduction can be significantly suppressed. Investigations of magnetic properties show that saturation magnetization of the reduced α-Fe nanoparticles decreases with particle size from 209 A m2 kg-1 at 390 °C reduction temperature to 204 A m2 kg-1 at 210 °C. Coercivity for the fine iron particles reaches 0.076 T which exceeds the theoretical anisotropy field. This is attributed to nano-scale surface effects.

3.
Dalton Trans ; 49(1): 131-135, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31793576

ABSTRACT

The search for tunable, size-dependent properties and unique processability has triggered the development of new synthetic routes for transition metal borides. MnB is a soft to semi-hard ferromagnetic material. This boride is now available by bottom-up, low-temperature solution chemistry. It is obtained as an unexpected metastable α'-variant that crystallises with a stacking-fault dominated CrB-type structure, as shown by transmission electron microscopy and X-ray powder diffraction (space group Cmcm, a = 300.5(8), b = 768.6(2), and c = 295.3(4) pm). The nanostructured powder consists of agglomerates of small particles (mean diameter of 85(41) nm) and transforms into well-known ß-MnB with FeB-type structure at 1523 K. The room temperature ferromagnetic behavior (TC = 545 K) is attributed to the positive exchange-correlation between the manganese atoms, that have many unpaired d electrons.

4.
Waste Manag ; 68: 482-489, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28751173

ABSTRACT

Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment.


Subject(s)
Electronic Waste , Magnets , Metals, Rare Earth , Neodymium , Recycling , Refuse Disposal
5.
Nat Commun ; 8(1): 54, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676636

ABSTRACT

A higher saturation magnetization obtained by an increased iron content is essential for yielding larger energy products in rare-earth Sm2Co17-type pinning-controlled permanent magnets. These are of importance for high-temperature industrial applications due to their intrinsic corrosion resistance and temperature stability. Here we present model magnets with an increased iron content based on a unique nanostructure and -chemical modification route using Fe, Cu, and Zr as dopants. The iron content controls the formation of a diamond-shaped cellular structure that dominates the density and strength of the domain wall pinning sites and thus the coercivity. Using ultra-high-resolution experimental and theoretical methods, we revealed the atomic structure of the single phases present and established a direct correlation to the macroscopic magnetic properties. With further development, this knowledge can be applied to produce samarium cobalt permanent magnets with improved magnetic performance.Understanding the factors that determine the properties of permanent magnets, which play a central role in many industrial applications, can help in improving their performance. Here, the authors study how changes in the iron content affect the microstructure of samarium cobalt magnets.

6.
Rev Sci Instrum ; 88(12): 125103, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289214

ABSTRACT

Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material-single wedges and a fully assembled PMQ module-were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

7.
Philos Trans A Math Phys Eng Sci ; 374(2074)2016 Aug 13.
Article in English | MEDLINE | ID: mdl-27402928

ABSTRACT

Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La-Fe-Si-, Heusler- and Fe2P-type compounds.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

8.
Phys Rev Lett ; 114(5): 057202, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25699465

ABSTRACT

By combination of two independent approaches, nuclear resonant inelastic x-ray scattering and first-principles calculations in the framework of density functional theory, we demonstrate significant changes in the element-resolved vibrational density of states across the first-order transition from the ferromagnetic low temperature to the paramagnetic high temperature phase of LaFe(13-x)Si(x). These changes originate from the itinerant electron metamagnetism associated with Fe and lead to a pronounced magneto-elastic softening despite the large volume decrease at the transition. The increase in lattice entropy associated with the Fe subsystem is significant and contributes cooperatively with the magnetic and electronic entropy changes to the excellent magneto- and barocaloric properties.

9.
J Phys Condens Matter ; 26(6): 064205, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24469009

ABSTRACT

Achieving a very strong magnetic anisotropy in a 3d material is a difficult, but not an impossible task. It is difficult because there is no general recipe (necessary condition) for a strong anisotropy in a band magnet. Several strategies can be pursued in this situation. One of them is to re-examine the less studied 3d compounds, somewhat neglected since the discovery of the Nd-Fe-B magnets 30 years ago. As an example, a single crystal of (Fe0.7Co0.3)2B has been investigated in this work.


Subject(s)
Iron/chemistry , Magnets/chemistry , Neodymium/chemistry , Anisotropy , Boron/chemistry , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...