Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 56(28): 3619-3631, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28632987

ABSTRACT

Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNAHis binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.


Subject(s)
Histidine-tRNA Ligase/genetics , Histidine-tRNA Ligase/metabolism , Point Mutation , Usher Syndromes/enzymology , Usher Syndromes/genetics , Amino Acid Sequence , Aminoacylation , Cells, Cultured , Enzyme Stability , HEK293 Cells , Histidine-tRNA Ligase/chemistry , Humans , Kinetics , Models, Molecular , Protein Biosynthesis , RNA, Transfer/metabolism , Sequence Alignment , Temperature , Usher Syndromes/metabolism
2.
Methods ; 113: 64-71, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27794454

ABSTRACT

Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.


Subject(s)
Alanine-tRNA Ligase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Histidine-tRNA Ligase/chemistry , RNA, Transfer, Amino Acid-Specific/metabolism , Threonine-tRNA Ligase/chemistry , Alanine-tRNA Ligase/antagonists & inhibitors , Alanine-tRNA Ligase/genetics , Alanine-tRNA Ligase/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Benzopyrans/chemistry , Enzyme Inhibitors/chemistry , Enzyme Stability , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fluorescent Dyes/chemistry , Fluorometry/methods , Histidine-tRNA Ligase/antagonists & inhibitors , Histidine-tRNA Ligase/genetics , Histidine-tRNA Ligase/metabolism , Muramidase/chemistry , Muramidase/metabolism , Phase Transition , Protein Binding , Protein Unfolding , RNA, Transfer, Amino Acid-Specific/genetics , Substrate Specificity , Threonine-tRNA Ligase/antagonists & inhibitors , Threonine-tRNA Ligase/genetics , Threonine-tRNA Ligase/metabolism , Transfer RNA Aminoacylation
3.
Nat Commun ; 3: 1014, 2012.
Article in English | MEDLINE | ID: mdl-22910360

ABSTRACT

Pupylation is a posttranslational protein modification occurring in mycobacteria and other actinobacteria that is functionally analogous to ubiquitination. Here we report the crystal structures of the modification enzymes involved in this pathway, the prokaryotic ubiquitin-like protein (Pup) ligase PafA and the depupylase/deamidase Dop. Both feature a larger amino-terminal domain consisting of a central ß-sheet packed against a cluster of helices, a fold characteristic for carboxylate-amine ligases, and a smaller C-terminal domain unique to PafA/Dop members. The active site is located on the concave surface of the ß-sheet with the nucleotide bound in a deep pocket. A conserved groove leading into the active site could have a role in Pup-binding. Nuclear magnetic resonance and biochemical experiments determine the region of Pup that interacts with PafA and Dop. Structural data and mutational studies identify crucial residues for the catalysis of both enzymes.


Subject(s)
Actinomycetales/enzymology , Amidohydrolases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bifidobacterium/enzymology , Actinomycetales/chemistry , Actinomycetales/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bifidobacterium/chemistry , Bifidobacterium/genetics , Crystallography, X-Ray , Molecular Sequence Data , Protein Binding , Protein Processing, Post-Translational , Sequence Alignment
4.
J Biol Chem ; 286(6): 4412-9, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21081505

ABSTRACT

In Mycobacterium tuberculosis, the enzyme PafA is responsible for the activation and conjugation of the proteasome-targeting molecule Pup to protein substrates. As the proteasomal pathway has been shown to be vital to the persistence of M. tuberculosis, understanding the reaction mechanism of PafA is critical to the design of antituberculous agents. In this study, we have developed novel techniques to study the activity of PafA and have characterized fundamental features of the reaction mechanism. We show that PafA catalyzes a two-step reaction mechanism proceeding through a γ-glutamyl phosphate-mixed anhydride intermediate that is formed on the C-terminal glutamate of Pup before transfer of Pup to the substrate acceptor lysine. SDS-PAGE analysis of formation of the phosphorylated intermediate revealed that the rate of Pup activation matched the maximal steady-state rate of product formation in the overall reaction and suggested that Pup activation was rate-limiting when all substrates were present at saturating concentrations. Following activation, both ADP and the phosphorylated intermediate remained associated with the enzyme awaiting nucleophilic attack by a lysine residue of the target protein. The PafA reaction mechanism appeared to be noticeably biased toward the stable activation of Pup in the absence of additional substrate and required very low concentrations of ATP and Pup relative to other carboxylate-amine/ammonia ligase family members. The bona fide nucleophilic substrate PanB showed a 3 orders of magnitude stronger affinity than free lysine, promoting Pup conjugation to occur close to the rate limit of activation with physiologically relevant concentrations of substrate.


Subject(s)
Bacterial Proteins/chemistry , Mycobacterium tuberculosis/enzymology , Ubiquitin-Protein Ligases/chemistry , Ubiquitins/chemistry , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Mycobacterium tuberculosis/genetics , Phosphorylation/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
5.
J Biol Chem ; 284(31): 20753-62, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19487703

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) join amino acids to their cognate tRNAs to initiate protein synthesis. Class II ARS possess a unique catalytic domain fold, possess active site signature sequences, and are dimers or tetramers. The dimeric class I enzymes, notably TyrRS, exhibit half-of-sites reactivity, but its mechanistic basis is unclear. In class II histidyl-tRNA synthetase (HisRS), amino acid activation occurs at different rates in the two active sites when tRNA is absent, but half-of-sites reactivity has not been observed. To investigate the mechanistic basis of the asymmetry, and explore the relationship between adenylate formation and conformational events in HisRS, a fluorescently labeled version of the enzyme was developed by conjugating 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl)coumarin (MDCC) to a cysteine introduced at residue 212, located in the insertion domain. The binding of the substrates histidine, ATP, and 5'-O-[N-(l-histidyl)sulfamoyl]adenosine to MDCC-HisRS produced fluorescence quenches on the order of 6-15%, allowing equilibrium dissociation constants to be measured. The rates of adenylate formation measured by rapid quench and domain closure as measured by stopped-flow fluorescence were similar and asymmetric with respect to the two active sites of the dimer, indicating that conformational change may be rate-limiting for product formation. Fluorescence resonance energy transfer experiments employing differential labeling of the two monomers in the dimer suggested that rigid body rotation of the insertion domain accompanies adenylate formation. The results support an alternating site model for catalysis in HisRS that may prove to be common to other class II aminoacyl-tRNA synthetases.


Subject(s)
Aminoacylation , Escherichia coli/enzymology , Histidine-tRNA Ligase/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Energy Transfer , Fluorescent Dyes/metabolism , Histidine-tRNA Ligase/chemistry , Hydrogen-Ion Concentration , Kinetics , Protein Multimerization , Protein Structure, Secondary , Spectrometry, Fluorescence , Substrate Specificity , Temperature
6.
Mol Cell ; 25(4): 531-42, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17317626

ABSTRACT

The selection of tRNAs by their cognate aminoacyl-tRNA synthetases is critical for ensuring the fidelity of protein synthesis. While nucleotides that comprise tRNA identity sets have been readily identified, their specific role in the elementary steps of aminoacylation is poorly understood. By use of a rapid kinetics analysis employing mutants in tRNA(His) and its cognate aminoacyl-tRNA synthetase, the role of tRNA identity in aminoacylation was investigated. While mutations in the tRNA anticodon preferentially affected the thermodynamics of initial complex formation, mutations in the acceptor stem or the conserved motif 2 loop of the tRNA synthetase imposed a specific kinetic block on aminoacyl transfer and decreased tRNA-mediated kinetic control of amino acid activation. The mechanistic basis of tRNA identity is analogous to fidelity control by DNA polymerases and the ribosome, whose reactions also demand high accuracy.


Subject(s)
Conserved Sequence , Escherichia coli/enzymology , Histidine-tRNA Ligase/chemistry , Histidine-tRNA Ligase/metabolism , RNA, Transfer, His/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , Catalysis , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutant Proteins/metabolism , Mutation/genetics , Protein Structure, Secondary , RNA, Transfer, His/chemistry , RNA, Transfer, His/genetics , Structure-Activity Relationship , Temperature , Transfer RNA Aminoacylation
7.
RNA ; 12(7): 1315-22, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16741232

ABSTRACT

All histidine tRNA molecules have an extra nucleotide, G-1, at the 5' end of the acceptor stem. In bacteria, archaea, and eukaryotic organelles, G-1 base pairs with C73, while in eukaryotic cytoplasmic tRNAHis, G-1 is opposite A73. Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity. Specifically, the 5'-monophosphate of G-1 and the major groove amine of C73 are recognized by E. coli HisRS; these individual atomic groups each contribute approximately 4 kcal/mol to transition state stabilization. In this study, two chemically synthesized 24-nucleotide RNA microhelices, each of which recapitulates the acceptor stem of either E. coli or Saccharomyces cervisiae tRNAHis, were used to facilitate an atomic group "mutagenesis" study of the -1:73 base pair recognition by S. cerevisiae HisRS. Compared with E. coli HisRS, microhelixHis is a much poorer substrate relative to full-length tRNAHis for the yeast enzyme. However, the data presented here suggest that, similar to the E. coli system, the 5' monophosphate of yeast tRNA(His) is critical for aminoacylation by yeast HisRS and contributes approximately 3 kcal/mol to transition state stability. The primary role of the unique -1:73 base pair of yeast tRNAHis appears to be to properly position the critical 5' monophosphate for interaction with the yeast enzyme. Our data also suggest that the eukaryotic HisRS/tRNAHis interaction has coevolved to rely less on specific major groove interactions with base atomic groups than the bacterial system.


Subject(s)
Evolution, Molecular , RNA, Transfer, His/chemistry , RNA, Transfer, His/genetics , Acylation , Base Sequence , Indicators and Reagents , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Transfer, His/metabolism , Saccharomyces cerevisiae/genetics
8.
Protein Sci ; 14(6): 1556-69, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15930003

ABSTRACT

Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%-30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T(1), T(2), and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.


Subject(s)
Multiprotein Complexes/chemistry , Peptides/chemistry , Proteins/chemistry , Receptor, ErbB-2/chemistry , src Homology Domains , GRB7 Adaptor Protein , Humans , Thermodynamics
9.
Biochemistry ; 44(10): 3785-94, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15751955

ABSTRACT

Aminoacyl-tRNA synthetases (aaRS) join amino acids to their cognate transfer RNAs, establishing an essential coding relationship in translation. To investigate the mechanism of aminoacyl transfer in class II Escherichia coli histidyl-tRNA synthetase (HisRS), we devised a rapid quench assay. Under single turnover conditions with limiting tRNA, aminoacyl transfer proceeds at 18.8 s(-)(1), whereas in the steady state, the overall rate of aminoacylation is limited by amino acid activation to a rate of 3 s(-)(1). In vivo, this mechanism may serve to allow the size of amino acid pools and energy charge to control the rate of aminoacylation and thus protein synthesis. Aminoacyl transfer experiments using HisRS active site mutants and phosphorothioate-substituted adenylate showed that substitution of the nonbridging Sp oxygen of the adenylate decreased the transfer rate at least 10 000-fold, providing direct experimental evidence for the role of this group as a general base for the reaction. Other kinetic experiments revealed that the rate of aminoacyl transfer is independent of the interaction between the carboxyamide group of Gln127 and the alpha-carboxylate carbon, arguing against the formation of a tetrahedral intermediate during the aminoacyl transfer. These experiments support a substrate-assisted concerted mechanism for HisRS, a feature that may generalize to other aaRS, as well as the peptidyl transferase center.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Histidine-tRNA Ligase/chemistry , Histidine-tRNA Ligase/metabolism , Models, Chemical , Transfer RNA Aminoacylation , Amino Acid Substitution/genetics , Binding Sites/genetics , Catalysis , Dimerization , Escherichia coli Proteins/genetics , Histidine-tRNA Ligase/genetics , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , RNA, Transfer, His/chemistry , RNA, Transfer, His/metabolism , Substrate Specificity , Thionucleotides/chemistry , Thionucleotides/metabolism , Transfer RNA Aminoacylation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...