Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 10(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921369

ABSTRACT

Current agrochemicals used in crop farming mainly consist of synthetic compounds with harmful effects on the environment and human health. Crop-associated fungal endophytes, which play many ecological roles including defense against pathogens, represent a promising source for bioactive and ecologically safer molecules in agrochemical discovery. The methanolic extract of the endophyte Menisporopsis sp. LCM 1078 was evaluated in vitro against the plant pathogens Boeremia exigua, Calonectria variabilis, Colletotrichum theobromicola, Colletotrichum tropicale, and Mycena cytricolor. Bioassay-guided isolation using chromatographic techniques followed by detailed chemical characterization by NMR and mass spectrometry led to the identification of menisporopsin A, which showed inhibitory activity in a dose-dependent manner against the five fungal pathogens including an endophytic strain (Colletotrichum tropicale), with MIC values in the range of 0.63-10.0 µg/mL showing a potency equivalent to the broadly employed agrochemical mancozeb.

2.
Molecules ; 29(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38202779

ABSTRACT

Amphibians are widely known as a prolific source of bioactive metabolites. In this work, we isolated and characterized compounds with antiparasitic activity from the oocytes of the toad Rhinella alata collected in Panama. Bio-guided isolation and structural elucidation were carried out using chromatographic and spectroscopic techniques, respectively. The organic extract was subjected to solid phase extraction followed by HPLC purification of the fraction with in vitro activity against Trypanosoma cruzi trypomastigotes. Seven steroids (1-7) of the bufadienolide family were isolated, and their structures were determined using NMR and MS analyses; of these 19-formyl-dyscinobufotalin, (3) is reported as a new natural product. Compounds 1 and 3-7 resulted in a good anti-trypanosomal activity profile. Among these, 16ß-hydroxyl-hellebrigenin (1) and bufalin (7) showed significant selectivity values of >5 and 2.69, respectively, while the positive control benznidazole showed a selectivity of 18.81. Furthermore, molecular docking analysis showed compounds 1, 3 and 7 interact through H-bonds with the amino acid residues GLN-19, ASP-158, HIS-159 and TRP-177 from cruzipain at the catalytic site. Given the lack of therapeutic options to treat American trypanosomiasis, this work can serve as the basis for further studies that aim for the development of bufadienolides or their derivatives as drugs against Chagas disease.


Subject(s)
Bufanolides , Chagas Disease , Trypanosoma cruzi , Animals , Bufonidae , Molecular Docking Simulation , Oocytes , Bufanolides/pharmacology , Chagas Disease/drug therapy
3.
Molecules ; 26(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34299492

ABSTRACT

Toads in the family Bufonidae contain bufadienolides in their venom, which are characterized by their chemical diversity and high pharmacological potential. American trypanosomiasis is a neglected disease that affects an estimated 8 million people in tropical and subtropical countries. In this research, we investigated the chemical composition and antitrypanosomal activity of toad venom from Rhinella alata collected in Panama. Structural determination using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy led to the identification of 10 bufadienolides. Compounds identified include the following: 16ß-hydroxy-desacetyl-bufotalin-3-adipoyl-arginine ester (1), bufotalin (2), 16ß-hydroxy-desacetyl-bufotalin-3-pimeloyl-arginine ester (3), bufotalin-3-pimeloyl-arginine ester (4), 16ß-hydroxy-desacetyl-bufotalin-3-suberoyl-arginine ester (5), bufotalin-3-suberoyl-arginine ester (6), cinobufagin-3-adipoyl-arginine ester (7), cinobufagin-3-pimeloyl-arginine ester (8), cinobufagin-3-suberoyl-arginine ester (9), and cinobufagin (10). Among these, three new natural products, 1, 3, and 5, are described, and compounds 1-10 are reported for the first time in R. alata. The antitrypanosomal activity assessed in this study revealed that the presence of an arginyl-diacid attached to C-3, and a hydroxyl group at C-14 in the structure of bufadienolides that is important for their biological activity. Bufadienolides showed cytotoxic activity against epithelial kidney Vero cells; however, bufagins (2 and 10) displayed low mammalian cytotoxicity. Compounds 2 and 10 showed activity against the cancer cell lines MCF-7, NCI-H460, and SF-268.


Subject(s)
Antiprotozoal Agents/pharmacology , Bufanolides/pharmacology , Bufonidae/metabolism , Skin/metabolism , Amphibian Venoms/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chlorocebus aethiops , Humans , MCF-7 Cells , Mass Spectrometry/methods , Panama , Trypanosoma cruzi , Vero Cells
4.
Antibiotics (Basel) ; 9(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353062

ABSTRACT

The present research aimed to evaluate the antibacterial activity of volatile organic compounds (VOCs) produced by octocoral-associated bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. The volatilome bioactivity of both bacteria species was evaluated against human pathogenic antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus, Acinetobacter baumanni, and Pseudomonas aeruginosa. In this regard, the in vitro tests showed that Bacillus sp. BO53 VOCs inhibited the growth of P. aeruginosa and reduced the growth of S. aureus and A. baumanni. Furthermore, Pseudoalteromonas sp. GA327 strongly inhibited the growth of A. baumanni, and P. aeruginosa. VOCs were analyzed by headspace solid-phase microextraction (HS-SPME) joined to gas chromatography-mass spectrometry (GC-MS) methodology. Nineteen VOCs were identified, where 5-acetyl-2-methylpyridine, 2-butanone, and 2-nonanone were the major compounds identified on Bacillus sp. BO53 VOCs; while 1-pentanol, 2-butanone, and butyl formate were the primary volatile compounds detected in Pseudoalteromonas sp. GA327. We proposed that the observed bioactivity is mainly due to the efficient inhibitory biochemical mechanisms of alcohols and ketones upon antibiotic-resistant bacteria. This is the first report which describes the antibacterial activity of VOCs emitted by octocoral-associated bacteria.

5.
Antibiotics (Basel) ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255881

ABSTRACT

Species of the family Bufonidae, better known as true toads, are widespread and produce bioactive substances in the secretions obtained from specialized skin macroglands. Some true toads have been employed as a folk remedy to treat infectious diseases caused by microbial pathogens. Recent publications based on in silico analysis highlighted the Bufonidae as promising sources of antimicrobial peptides. A review of the literature reveals that Bufonidae skin secretion extracts show inhibitory activity in vitro against clinical isolates of bacteria, resistant and standard strains of bacterial, and fungal and parasitic human pathogens. Secondary metabolites belonging to the classes of alkaloids, bufadienolides, and peptides with antimicrobial activity have been isolated from species of the genera Bufo, Bufotes, Duttaphrynus, and Rhinella. Additionally, some antimicrobial extracts and purified compounds display low cytotoxicity against mammal cells.

6.
Metabolites ; 10(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33065987

ABSTRACT

The Panamanian rocket frog Colostethus panamansis (family Dendrobatidae) has been affected by chytridiomycosis, a deadly disease caused by the fungus Batrachochytrium dendrobatidis (Bd). While there are still uninfected frogs, we set out to isolate microbes from anatomically distinct regions in an effort to create a cultivable resource within Panama for potential drug/agricultural/ecological applications that perhaps could also be used as part of a strategy to protect frogs from infections. To understand if there are specific anatomies that should be explored in future applications of this resource, we mapped skin-associated bacteria of C. panamansis and their metabolite production potential by mass spectrometry on a 3D model. Our results indicate that five bacterial families (Enterobacteriaceae, Comamonadaceae, Aeromonadaceae, Staphylococcaceae and Pseudomonadaceae) dominate the cultivable microbes from the skin of C. panamansis. The combination of microbial classification and molecular analysis in relation to the anti-Bd inhibitory databases reveals the resource has future potential for amphibian conservation.

7.
Mar Drugs ; 18(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899199

ABSTRACT

The marine bacterial genus Pseudoalteromonas is known for their ability to produce antimicrobial compounds. The metabolite-producing capacity of Pseudoalteromonas has been associated with strain pigmentation; however, the genomic basis of their antimicrobial capacity remains to be explained. In this study, we sequenced the whole genome of six Pseudoalteromonas strains (three pigmented and three non-pigmented), with the purpose of identifying biosynthetic gene clusters (BGCs) associated to compounds we detected via microbial interactions along through MS-based molecular networking. The genomes were assembled and annotated using the SPAdes and RAST pipelines and mined for the identification of gene clusters involved in secondary metabolism using the antiSMASH database. Nineteen BGCs were detected for each non-pigmented strain, while more than thirty BGCs were found for two of the pigmented strains. Among these, the groups of genes of nonribosomal peptide synthetases (NRPS) that code for bromoalterochromides stand out the most. Our results show that all strains possess BGCs for the production of secondary metabolites, and a considerable number of distinct polyketide synthases (PKS) and NRPS clusters are present in pigmented strains. Furthermore, the molecular networking analyses revealed two new molecules produced during microbial interactions: the dibromoalterochromides D/D' (11-12).


Subject(s)
Anti-Infective Agents , Bacterial Proteins/genetics , Data Mining , Depsipeptides/genetics , Gene Expression Profiling , Pseudoalteromonas/genetics , Transcriptome , Animals , Anthozoa/microbiology , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Databases, Genetic , Depsipeptides/metabolism , Depsipeptides/pharmacology , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Multigene Family , Panama , Parks, Recreational , Phylogeny , Pseudoalteromonas/metabolism , Secondary Metabolism
8.
Nat Protoc ; 15(6): 1954-1991, 2020 06.
Article in English | MEDLINE | ID: mdl-32405051

ABSTRACT

Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.


Subject(s)
Metabolomics/methods , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Humans , Metabolic Networks and Pathways , Mice , Reproducibility of Results , Software , Workflow
9.
Toxicon ; 177: 89-92, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32061723

ABSTRACT

American trypanosomiasis is a parasitic neglected disease, responsible for the death of approximately 10,000 people every year. Amphibians are recognized for producing in their cutaneous glands substances with pharmacological potential against a variety of pathologies. Here we investigated the antiprotozoal activity against Trypanosoma cruzi of bufadienolides isolated from the parotoid glands secretions of the toad Rhinella centralis from Panama. NMR and mass spectrometry analysis led to the identification of the active compound 19-hydroxy-bufalin, for which its antitrypanosomal activity and occurrence in the genus Rhinella are reported for the first time. This compound showed low cytotoxicity and significant selectivity which confers to it a potential role for the treatment of Chagas disease.


Subject(s)
Amphibian Venoms/toxicity , Bufanolides/toxicity , Bufonidae , Trypanosoma cruzi/drug effects , Animals , Bufanolides/isolation & purification
10.
Mar Drugs ; 18(2)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012770

ABSTRACT

Gorgonian octocorals are considered a prolific source of secondary metabolites with a wide range of biological activities, including anti-inflammatory activity. In particular, the genus Briareum is known for producing a wealth of diterpenes with complex chemical structures. The chemical study of the methanolic extract of Briareum asbestinum collected in Bocas del Toro, on the Caribbean side of Panama, led to the isolation of three new eunicellin-type diterpenes: briarellin T (1), asbestinin 27 (2), asbestinin 28 (3) and the previously described asbestinin 17 (4). The structures of the new compounds were determined by extensive NMR analyses and HRMS. Anti-inflammatory activity assays showed a significant reduction of the pro-inflammatory cytokines TNF-α, IL-6, IL-1ß and IL-8 as well as a downregulation of COX-2 expression in LPS-stimulated THP-1 macrophages. These findings support the potential use of these marine compounds as therapeutic agents in the treatment of inflammatory diseases.


Subject(s)
Anthozoa , Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Animals , Cyclooxygenase 2/metabolism , Panama
11.
PLoS One ; 14(4): e0214193, 2019.
Article in English | MEDLINE | ID: mdl-30939131

ABSTRACT

Cocos nucifera (C. nucifera) (the coconut palm tree) has been traditionally used to fight a number of human diseases, but only a few studies have tested its components against parasites such as those that cause malaria. In this study, C. nucifera samples were collected from a private natural reserve in Punta Patiño, Darien, Panama. The husk, leaves, pulp, and milk of C. nucifera were extracted and evaluated against the parasites that cause Chagas' disease or American trypanosomiasis (Trypanosoma cruzi), leishmaniasis (Leishmania donovani) and malaria (Plasmodium falciparum), as well as against a line of breast cancer cells. While there was no activity in the rest of the tests, five and fifteen-minute aqueous decoctions of leaves showed antiplasmodial activity at 10% v/v concentration. Removal of some HPLC fractions resulted in loss of activity, pointing to the presence of synergy between the components of the decoction. Chemical molecules were separated and identified using an ultra-performance liquid chromatography (UPLC) approach coupled to tandem mass spectrometry (LC-MS/MS) using atmospheric pressure chemical ionization quadrupole-time of flight mass spectrometry (APCI-Q-TOF-MS) and molecular networking analysis, revealing the presence of compounds including polyphenol, flavone, sterol, fatty acid and chlorophyll families, among others.


Subject(s)
Antiparasitic Agents/pharmacology , Cocos/chemistry , Leishmaniasis/drug therapy , Malaria, Falciparum/drug therapy , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiparasitic Agents/chemistry , Arecaceae/chemistry , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Leishmania donovani/drug effects , Leishmania donovani/pathogenicity , Leishmaniasis/parasitology , Malaria, Falciparum/parasitology , Panama , Plant Leaves/chemistry , Tandem Mass Spectrometry , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/pathogenicity
12.
Sci Rep ; 9(1): 3019, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816229

ABSTRACT

Amphibian populations worldwide have declined and in some cases become extinct due to chytridiomycosis, a pandemic disease caused by the fungus Batrachochytrium dendrobatidis; however, some species have survived these fungal epidemics. Previous studies have suggested that the resistance of these species is due to the presence of cutaneous bacteria producing antifungal metabolites. As our understanding of these metabolites is still limited, we assessed the potential of such compounds against human-relevant fungi such as Aspergillus. In this work we isolated 201 bacterial strains from fifteen samples belonging to seven frog species collected in the highlands of Panama and tested them against Aspergillus fumigatus. Among the 29 bacterial isolates that exhibited antifungal activity, Pseudomonas cichorii showed the greatest inhibition. To visualize the distribution of compounds and identify them in the inhibition zone produced by P. cichorii, we employed MALDI imaging mass spectrometry (MALDI IMS) and MS/MS molecular networking. We identified viscosin and massetolides A, F, G and H in the inhibition zone. Furthermore, viscosin was isolated and evaluated in vitro against A. fumigatus and B. dendrobatidis showing MIC values of 62.50 µg/mL and 31.25 µg/mL, respectively. This is the first report of cyclic depsipeptides with antifungal activity isolated from frog cutaneous bacteria.


Subject(s)
Anura/microbiology , Aspergillus fumigatus/drug effects , Chytridiomycota/drug effects , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Skin/microbiology , Animals , Pseudomonas/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Symbiosis/physiology , Tandem Mass Spectrometry/methods
13.
Biomolecules ; 8(4)2018 10 05.
Article in English | MEDLINE | ID: mdl-30301161

ABSTRACT

The proteasome is an intracellular complex that degrades damaged or unfolded proteins and participates in the regulation of several processes. The immunoproteasome is a specialized form that is expressed in response to proinflammatory signals and is particularly abundant in immune cells. In a previous work, we found an anti-inflammatory effect in a diterpenoid extracted from the octocoral Pseudopterogorgia acerosa, here called compound 1. This compound prevented the degradation of inhibitor κB α (IκBα) and the subsequent activation of nuclear factor κB (NFκB), suggesting that this effect might be due to inhibition of the ubiquitin-proteasome system. Here we show that compound 1 inhibits the proteasomal chymotrypsin-like activity (CTL) of murine macrophages in the presence of lipopolysaccharide (LPS) but not in its absence. This effect might be due to the capacity of this compound to inhibit the activity of purified immunoproteasome. The compound inhibits the cell surface expression of major histocompatibility complex (MHC)-I molecules and the production of proinflammatory cytokines induced by LPS in vitro and in vivo, respectively. Molecular docking simulations predicted that compound 1 selectively binds to the catalytic site of immunoproteasome subunits ß1i and ß5i, which are responsible for the CTL activity. Taken together these findings suggest that the compound could be a selective inhibitor of the immunoproteasome, and hence could pave the way for its future evaluation as a candidate for the treatment of inflammatory disorders and autoimmune diseases.


Subject(s)
Diterpenes/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Proteasome Endopeptidase Complex/drug effects , Animals , Chymases/chemistry , Chymases/genetics , Humans , Macrophages/immunology , Major Histocompatibility Complex/drug effects , Major Histocompatibility Complex/immunology , Mice , Molecular Docking Simulation , NF-KappaB Inhibitor alpha/chemistry , NF-KappaB Inhibitor alpha/genetics , NF-kappa B/chemistry , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/immunology
14.
Molecules ; 23(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158478

ABSTRACT

Chemical examination of the octocoral-associated Bacillus species (sp.) DT001 led to the isolation of pumilacidins A (1) and C (2). We investigated the effect of these compounds on the viability of Plasmodium falciparum and the mechanism of pumilacidin-induced death. The use of inhibitors of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) was able to prevent the effects of pumilacidins A and C. The results indicated also that pumilacidins inhibit parasite growth via mitochondrial dysfunction and decreased cytosolic Ca2+.


Subject(s)
Antimalarials/pharmacology , Bacillus/chemistry , Peptides/pharmacology , Plasmodium falciparum/growth & development , Animals , Anthozoa/microbiology , Antimalarials/chemistry , Calcium/metabolism , Mitochondria/drug effects , Molecular Structure , Peptides/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protein Kinase Inhibitors/pharmacology
15.
J Basic Microbiol ; 58(9): 747-769, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29938809

ABSTRACT

Pseudoalteromonas is a genus of marine bacteria often found in association with other organisms. Although several studies have examined Pseudoalteromonas diversity and their antimicrobial activity, its diversity in tropical environments is largely unexplored. We investigated the diversity of Pseudoalteromonas in marine environments of Panama using a multilocus phylogenetic approach. Furthermore we tested their antimicrobial capacity and evaluated the effect of recombination and mutation in shaping their phylogenetic relationships. The reconstruction of clonal relationships among 78 strains including 15 reference Pseudoalteromonas species revealed 43 clonal lineages, divided in pigmented and non-pigmented strains. In total, 39 strains displayed moderate to high activity against Gram-positive and Gram-negative bacteria and fungi. Linkage disequilibrium analyses showed that the Pseudoalteromonas strains of Panama have a highly clonal structure and that, although present, recombination is not frequent enough to break the association among alleles. This clonal structure is in contrast to the high rates of recombination generally reported for aquatic and marine bacteria. We propose that this structure is likely due to the symbiotic association with marine invertebrates of most strains analyzed. Our results also show that there are several putative new species of Pseudoalteromonas in Panama to be described.


Subject(s)
Anti-Infective Agents/metabolism , Biodiversity , Phylogeny , Pseudoalteromonas/classification , Pseudoalteromonas/genetics , Seawater/microbiology , Anti-Infective Agents/pharmacology , Cluster Analysis , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Linkage Disequilibrium , Panama , Pseudoalteromonas/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Sci Rep ; 7(1): 5604, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717220

ABSTRACT

The fungus-growing ant-microbe symbiosis is an ideal system to study chemistry-based microbial interactions due to the wealth of microbial interactions described, and the lack of information on the molecules involved therein. In this study, we employed a combination of MALDI imaging mass spectrometry (MALDI-IMS) and MS/MS molecular networking to study chemistry-based microbial interactions in this system. MALDI IMS was used to visualize the distribution of antimicrobials at the inhibition zone between bacteria associated to the ant Acromyrmex echinatior and the fungal pathogen Escovopsis sp. MS/MS molecular networking was used for the dereplication of compounds found at the inhibition zones. We identified the antibiotics actinomycins D, X2 and X0ß, produced by the bacterium Streptomyces CBR38; and the macrolides elaiophylin, efomycin A and efomycin G, produced by the bacterium Streptomyces CBR53.These metabolites were found at the inhibition zones using MALDI IMS and were identified using MS/MS molecular networking. Additionally, three shearinines D, F, and J produced by the fungal pathogen Escovopsis TZ49 were detected. This is the first report of elaiophylins, actinomycin X0ß and shearinines in the fungus-growing ant symbiotic system. These results suggest a secondary prophylactic use of these antibiotics by A. echinatior because of their permanent production by the bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ants/microbiology , Host-Pathogen Interactions , Hypocreales/metabolism , Streptomyces/metabolism , Symbiosis , Tandem Mass Spectrometry/methods , Animals , Hypocreales/drug effects , Image Processing, Computer-Assisted , Phylogeny , Streptomyces/drug effects
17.
J Nat Prod ; 80(6): 1827-1836, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28535042

ABSTRACT

A family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, named dudawalamides A-D (1-4), was isolated from a Papua New Guinean field collection of the cyanobacterium Moorea producens using bioassay-guided and spectroscopic approaches. The planar structures of dudawalamides A-D were determined by a combination of 1D and 2D NMR experiments and MS analysis, whereas the absolute configurations were determined by X-ray crystallography, modified Marfey's analysis, chiral-phase GCMS, and chiral-phase HPLC. Dudawalamides A-D possess a broad spectrum of antiparasitic activity with minimal mammalian cell cytotoxicity. Comparative analysis of the Dhoya-containing class of lipopeptides reveals intriguing structure-activity relationship features of these NRPS-PKS-derived metabolites and their derivatives.


Subject(s)
Antiparasitic Agents/isolation & purification , Antiparasitic Agents/pharmacology , Cyanobacteria/chemistry , Depsipeptides/isolation & purification , Depsipeptides/pharmacology , Animals , Antiparasitic Agents/chemistry , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Depsipeptides/chemistry , Drug Screening Assays, Antitumor , Lipopeptides/chemistry , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Papua New Guinea , Peptides, Cyclic/chemistry , Structure-Activity Relationship
18.
J Alzheimers Dis ; 60(s1): S59-S68, 2017.
Article in English | MEDLINE | ID: mdl-28453488

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.


Subject(s)
Amyloid beta-Peptides/metabolism , Anti-Inflammatory Agents/pharmacology , Curcumin/chemical synthesis , Curcumin/pharmacology , Cytokines/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Cells, Cultured , Curcumin/chemistry , Cyclooxygenase 1/metabolism , Dose-Response Relationship, Drug , Female , Lipopolysaccharides/toxicity , Macrophages/drug effects , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Protein Aggregates/drug effects
19.
J Ethnopharmacol ; 198: 235-254, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28034659

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Among amphibians, 15 of the 47 species reported to be used in traditional medicines belong to the family Bufonidae, which demonstrates their potential in pharmacological and natural products research. For example, Asian and American tribes use the skin and the parotoid gland secretions of some common toads in the treatment of hemorrhages, bites and stings from venomous animals, skin and stomach disorders, as well as several types of cancers. OVERARCHING OBJECTIVE: In addition to reviewing the occurrence of chemical constituents present in the family Bufonidae, the cytotoxic and biomedical potential of the active compounds produced by different taxa are presented. METHODOLOGY: Available information on bioactive compounds isolated from species of the family Bufonidae was obtained from ACS Publications, Google, Google Scholar, Pubmed, Sciendirect and Springer. Papers written in Chinese, English, German and Spanish were considered. RESULTS: Recent reports show more than 30% of amphibians are in decline and some of bufonid species are considered to be extinct. For centuries, bufonids have been used as traditional folk remedies to treat allergies, inflammation, cancer, infections and other ailments, highlighting their importance as a prolific source for novel drugs and therapies. Toxins and bioactive chemical constituents from skin and parotid gland secretions of bufonid species can be grouped in five families, the guanidine alkaloids isolated and characterized from Atelopus, the lipophilic alkaloids isolated from Melanophryniscus, the indole alkaloids and bufadienolides known to be synthesized by species of bufonids, and peptides and proteins isolated from the skin and gastrointestinal extracts of some common toads. Overall, the bioactive secretions of this family of anurans may have antimicrobial, protease inhibitor and anticancer properties, as well as being active at the neuromuscular level. CONCLUSION: In this article, the traditional uses, toxicity and pharmacological potential of chemical compounds from bufonids have been summarized. In spite of being reported to be used to treat several diseases, neither extracts nor metabolites from bufonids have been tested in such illness like acne, osteoporosis, arthritis and other illnesses. However, the cytotoxicity of these metabolites needs to be evaluated on adequate animal models due to the limited conditions of in vitro assays. Novel qualitative and quantitative tools based on MS spectrometry and Nuclear Magnetic Resonance spectroscopy is now available to study the complex secretions of bufonids.


Subject(s)
Amphibian Venoms/isolation & purification , Bufonidae/metabolism , Medicine, Traditional/methods , Animals , Biological Products/isolation & purification , Biological Products/pharmacology , Biological Products/toxicity , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Species Specificity , Toxins, Biological/isolation & purification
20.
Molecules ; 21(6)2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27338338

ABSTRACT

Three new diterpenes, uprolide N (1), uprolide O (2), uprolide P (3) and a known one, dolabellane (4), were isolated from the CH2Cl2-MeOH extract of the gorgonian octocoral Eunicea succinea, collected from Bocas del Toro, on the Caribbean coast of Panama. Their structures were determined using spectroscopic analyses, including 1D and 2D NMR and high-resolution mass spectrometry (HRMS) together with molecular modeling studies. Compounds 1-3 displayed anti-inflammatory properties by inhibiting production of Tumor Necrosis Factor (TNF) and Interleukin (IL)-6 induced by lipopolysaccharide (LPS) in murine macrophages.


Subject(s)
Anthozoa/chemistry , Diterpenes/chemistry , Inflammation/drug therapy , Macrophages/drug effects , Animals , Diterpenes/administration & dosage , Diterpenes/isolation & purification , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/genetics , Interleukin-6/biosynthesis , Interleukin-6/genetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Panama , Plant Extracts/chemistry , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...