Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Blood Adv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717869

ABSTRACT

The efficacies of chimeric antigen receptor T (CAR-T) cells and bispecific monoclonal antibodies (BiAbs) for triple-class refractory (TCR) myeloma have not previously been compared, and clinical data on how to rescue patients after relapse from these immunotherapies are limited. A retrospective study of 73 TCR patients included in trials was conducted: 36 received CAR-T and 37 received BiAbs. CAR-T produced a higher overall response rate (ORR) than BiAbs (97.1% vs. 56.8%, P=0.002). After a median of follow-up of 18.7 months, no significant difference in progression-free survival (PFS) was observed between the CAR-T and BiAbs groups (16.6 vs. 10.8 months; P=0.090), whereas overall survival (OS) was significantly longer in the CAR-T than in the BiAbs group (49.2 vs. 22.6 months; P=0.021). BiAbs following CAR-T yielded a higher ORR and longer PFS2 than did non-redirecting T cell therapies after CAR-T (ORR: 87.5% vs. 50.0%, PFS2: 22.9 vs. 12.4 months). By contrast, BiAbs following BiAbs resulted in an ORR of 33% and PFS2 of 8.4 months, which was similar to that produced by the non-redirecting T cell therapies (ORR: 28.6%, PFS2: 8.1 months). Even though this is a pooled analysis of different trials with different products and the patient profile is different for CAR-T and BiAbs, both were effective therapies for TCR myeloma. However, in our experience, while the PFS was similar with the two approaches, CAR-T therapy resulted in better OS, mainly because of the efficacy of BiAbs as rescue therapy. Our results highlight the importance of treatment sequence in real-word experience.

3.
Haematologica ; 109(3): 877-887, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37646661

ABSTRACT

Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54 of 165 (33%) and 30 of 165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter overall survival (hazard ratio =2.14; P=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM (clinicaltrials gov. identifier: NCT01916252).


Subject(s)
Cyclin D1 , Multiple Myeloma , Humans , Cyclin D1/genetics , Cyclin D2/genetics , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Gene Expression Profiling , Cyclin D
4.
Blood ; 143(7): 597-603, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38048552

ABSTRACT

ABSTRACT: The role of measurable residual disease (MRD) negativity as a biomarker to stop treatment is being investigated in transplant-eligible patients with multiple myeloma (MM). Thus, it is important to identify risk factors of MRD resurgence and/or progressive disease (PD) among patients achieving undetectable MRD to avoid undertreating them. Here, we studied 267 newly diagnosed transplant-eligible patients with MM enrolled in the GEM2012MENOS65 and GEM2014MAIN clinical trials who achieved MRD negativity by next-generation flow cytometry. After a median follow-up of 73 months since the first MRD negative assessment, 111 of the 267 (42%) patients showed MRD resurgence and/or PD. The only prognostic factors at diagnosis that predicted MRD resurgence and/or PD were an International Staging System (ISS) 3 and the presence of ≥0.01% circulating tumor cells (CTCs). Failure to achieve MRD negativity after induction also predicted higher risk of MRD resurgence and/or PD. Patients having 0 vs 1 vs ≥2 risk factors (ISS 3, ≥0.01% CTCs, and late MRD negativity) showed 5-year rates of MRD resurgence and/or PD of 16%, 33%, and 57%, respectively (P < .001). Thus, these easily measurable risk factors could help refine the selection of patients for whom treatment cessation after MRD negativity is being investigated in clinical trials. This trial was registered at www.clinicaltrials.gov as NCT01916252 and NCT02406144.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Treatment Outcome , Risk Factors , Neoplasm, Residual/diagnosis
5.
Blood Cancer J ; 13(1): 40, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36935422

ABSTRACT

Multiple myeloma (MM) patients with t(11;14) present unique biological features and their prognosis is not well established. We report a retrospective study of 591 MM patients, 17.3% of whom had t(11;14). It was designed to determine the prognostic impact of this abnormality and the effect of novel agents on the response and outcomes. Three groups were established based on their cytogenetics: (1) t(11;14); (2) high-risk chromosomal abnormalities; and (3) standard risk (SR). After 80.1 months (1.2-273.8 months) of follow-up, no differences were observed in overall survival (OS) between the t(11;14) and SR groups (75.8 vs. 87.2 months; P = 0.438). Treatment of MM t(11;14) with novel agents did not improve their overall response rate (ORR) or complete response (CR) compared with those who received conventional therapy (ORR: 87.2 vs. 79.5%, P = 0.336; CR: 23.4 vs. 12.8%, P = 0.215). This effect translated into a similar PFS (39.6 vs. 30.0 months; P = 0.450) and OS (107.6 vs. 75.7 months; P = 0.175). In summary, MM t(11;14) patients did not benefit from the introduction of novel agents as much as SR patients did, indicating that other therapies are needed to improve their outcomes.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Retrospective Studies , Disease-Free Survival , Prognosis , Chromosome Aberrations , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols
6.
Cancers (Basel) ; 15(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900349

ABSTRACT

(1) Background: New therapeutic strategies have improved the prognosis of multiple myeloma (MM), changing the accepted view of this disease from being incurable to treatable. (2) Methods: We studied 1001 patients with MM between 1980 and 2020, grouping patients into ten-year periods by diagnosis 1980-1990, 1991-2000, 2001-2010 and 2011-2020. (3) Results: After 65.1 months of follow-up, the median OS of the cohort was 60.3 months, and OS increased significantly over time: 22.4 months in 1980-1990, 37.4 months in 1991-2000, 61.8 months in 2001-2010 and 103.6 months in 2011-2020 (p < 0.001). Using novel agents in the front-line setting for myeloma patients yielded a significantly better OS than in those treated with conventional therapies, especially when combinations of at least two novel agents were used. The median OS of patients treated with the combination of at least two novel agents in induction was significantly prolonged compared to those treated with a single novel agent or conventional therapy in induction: 143.3 vs. 61.0 vs. 42.2 months (p < 0.001). The improvement was apparent in all patients regardless of age at diagnosis. In addition, 132 (13.2%) patients were long-term survivors (median OS ≥ 10 years). Some independent clinical predictors of long-term survival were identified: ECOG < 1, age at diagnosis ≤ 65 years, non-IgA subtype, ISS-1 and standard-risk cytogenetic. Achieving CR and undergoing ASCT were positively associated with >10 years of survival. (4) Conclusions: The combination of novel agents appears to be the main factor for the improvement in survival in MM, which is becoming a chronic and even curable disease in a subtype of patients without high-risk features.

7.
Br J Haematol ; 200(3): 306-314, 2023 02.
Article in English | MEDLINE | ID: mdl-36261137

ABSTRACT

Although follicular lymphoma (FL) patients relapsing within 24 months after first-line treatment (POD24) have a poor prognosis, some cases show notable survival after first relapse (SF1R). We aimed to characterize the POD24 FL population and to identify the main prognostic factors at progression. We selected 162 POD24 patients (80F; median age at first relapse 59 years) from a cohort of 1067 grades 1-3a FL-treated patients. The remaining 905 patients treated with first-line immunochemotherapy and diagnosed during the same period were used to compare outcomes in terms of survival. After a median follow-up of 11.0 years, 96 patients died (10y-SF1R of 40%). Age over 60 years (p < 0.001), high lactate dehydrogenase (LDH) (p < 0.001), haemoglobin (Hb) less than 120 g/L (p < 0.001), advanced stage (p < 0.001), high-risk Follicular Lymphoma International Prognostic Index (FLIPI) (p < 0.001), histological transformation (HT) (p < 0.001) and reaching less than complete response (CR) after salvage therapy (p < 0.001), predicted poor SF1R at relapse. In multivariate analysis only high-risk FLIPI and HT maintained prognostic significance for SF1R. POD24 patients not transformed and with low/intermediate FLIPI at relapse behaved better than the remaining cases. POD24 patients showed an excess mortality of 38% compared to the general population. Although outcome of POD24 FL patients is poor, a considerable group of them (low/intermediate FLIPI and not transformed at first relapse) behave better.


Subject(s)
Lymphoma, Follicular , Humans , Middle Aged , Prognosis , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/pathology , Neoplasm Recurrence, Local , Immunotherapy
8.
J Clin Med ; 13(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202077

ABSTRACT

Overall, around 40% of patients with diffuse large B-cell lymphoma (DLBCL) have refractory disease or relapse after the first line of treatment. Until relatively recently, the prognosis of patients with relapsed or refractory DLBCL was very poor and treatment options were very limited. In recent years, several novel therapies have been approved that provide more effective options than conventional chemotherapy and that have manageable toxicity profiles. CAR-T cell therapy has become the new standard treatment for patients with refractory or early relapsed DLBCL, based on the positive results of the phase 3 ZUMA-7 and TRANSFORM clinical trials. This review addresses the role of CAR-T therapy and autologous stem cell transplantation in the treatment of these patients and other approved options for patients who are not candidates for transplant, such as the combinations of polatuzumab vedotin with bendamustine and rituximab, and tafasitamab with lenalidomide.

9.
Cancers (Basel) ; 14(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291952

ABSTRACT

Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients.

10.
Br J Haematol ; 199(3): 344-354, 2022 11.
Article in English | MEDLINE | ID: mdl-35983648

ABSTRACT

Biallelic inactivation of TP53 has been included in the definition of double-hit (DH) multiple myeloma (MM), which entails an ominous prognosis. However, this condition, or even the presence of high-risk cytogenetic abnormalities, cannot accurately capture the 15%-20% of the MM population with a median overall survival below 24 months. This prompted us to look for other MM patients who might have transcriptional characteristics similar to those with DH-TP53. In the present study, we analysed RNA-seq, whole-genome and whole-exome sequencing data from 660 newly diagnosed MM (NDMM) patients from the MMRF (Multiple Myeloma Research Foundation) CoMMpass study to characterize the transcriptional signature of TP53 double-hit (DH-TP53) MM. We found 78 genes that were exclusively deregulated in DH-TP53 patients. A score based on these genes identified a group of 50 patients who shared the same transcriptional profile (DH-TP53-like group) whose prognosis was particularly unfavourable [median overall survival (OS) < 2 years], despite not harbouring the biallelic inactivation of TP53. The prognostic value of the DH-TP53 score was externally validated using gene expression data from 850 NDMM patients analysed by microarrays. Furthermore, our DH-TP53 score refined the traditional prognostic stratification of MM patients according to the cytogenetic abnormalities and International Staging System (ISS).


Subject(s)
Multiple Myeloma , Humans , Chromosome Aberrations , Prognosis , Tumor Suppressor Protein p53/genetics
11.
Exp Hematol Oncol ; 11(1): 18, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361260

ABSTRACT

BACKGROUND: IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. METHODS: In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. RESULTS: Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. CONCLUSION: This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation.

12.
Cancers (Basel) ; 14(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35326746

ABSTRACT

Plasma cell leukemia (PCL) is a rare and highly aggressive plasma cell dyscrasia characterized by the presence of clonal circulating plasma cells in peripheral blood. PCL accounts for approximately 2-4% of all multiple myeloma (MM) cases. PCL can be classified in primary PCL (pPCL) when it appears de novo and in secondary PCL (sPCL) when it arises from a pre-existing relapsed/refractory MM. Despite the improvement in treatment modalities, the prognosis remains very poor. There is growing evidence that pPCL is a different clinicopathological entity as compared to MM, although the mechanisms underlying its pathogenesis are not fully elucidated. The development of new high-throughput technologies, such as microarrays and new generation sequencing (NGS), has contributed to a better understanding of the peculiar biological and clinical features of this disease. Relevant information is now available on cytogenetic alterations, genetic variants, transcriptome, methylation patterns, and non-coding RNA profiles. Additionally, attempts have been made to integrate genomic alterations with gene expression data. However, given the low frequency of PCL, most of the genetic information comes from retrospective studies with a small number of patients, sometimes leading to inconsistent results.

13.
Am J Hematol ; 97(6): 700-710, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35188691

ABSTRACT

Loss and/or mutation of the TP53 gene are associated with short survival in multiple myeloma, but the p53 landscape goes far beyond. At least 12 p53 protein isoforms have been identified as a result of a combination of alternative splicing, alternative promoters and/or alternative transcription site starts, which are grouped as α, ß, γ, from transactivation domain (TA), long, and short isoforms. Nowadays, there are no studies evaluating the expression of p53 isoforms and its clinical relevance in multiple myeloma (MM). We used capillary nanoimmunoassay to quantify the expression of p53 protein isoforms in CD138-purified samples from 156 patients with newly diagnosed MM who were treated as part of the PETHEMA/GEM2012 clinical trial and investigated their prognostic impact. Quantitative real-time polymerase chain reaction was used to corroborate the results at RNA levels. Low and high levels of expression of short and TAp53ß/γ isoforms, respectively, were associated with adverse prognosis in MM patients. Multivariate Cox models identified high levels of TAp53ß/γ (hazard ratio [HR], 4.49; p < .001) and high-risk cytogenetics (HR, 2.69; p < .001) as independent prognostic factors associated with shorter time to progression. The current cytogenetic-risk classification was notably improved when expression levels of p53 protein isoforms were incorporated, whereby high-risk MM expressing high levels of short isoforms had significantly longer survival than high-risk patients with low levels of these isoforms. This is the first study that demonstrates the prognostic value of p53 isoforms in MM patients, providing new insights on the role of p53 protein dysregulation in MM biology.


Subject(s)
Multiple Myeloma , Tumor Suppressor Protein p53 , Genes, p53 , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/therapy , Prognosis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
Clin Cancer Res ; 28(12): 2598-2609, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35063966

ABSTRACT

PURPOSE: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. EXPERIMENTAL DESIGN: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. RESULTS: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. CONCLUSIONS: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482.


Subject(s)
Multiple Myeloma , Aged , Biomarkers , Humans , Machine Learning , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Neoplasm, Residual/diagnosis , Survival Rate
15.
Arch Pathol Lab Med ; 146(7): 862-871, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34619755

ABSTRACT

CONTEXT.­: Minimal residual disease (MRD) is a major prognostic factor in multiple myeloma, although validated technologies are limited. OBJECTIVE.­: To standardize the performance of the LymphoTrack next-generation sequencing (NGS) assays (Invivoscribe), targeting clonal immunoglobulin rearrangements, in order to reproduce the detection of tumor clonotypes and MRD quantitation in myeloma. DESIGN.­: The quantification ability of the assay was evaluated through serial dilution experiments. Paired samples from 101 patients were tested by LymphoTrack, using Sanger sequencing and EuroFlow's next-generation flow (NGF) assay as validated references for diagnostic and follow-up evaluation, respectively. MRD studies using LymphoTrack were performed in parallel at 2 laboratories to evaluate reproducibility. RESULTS.­: Sensitivity was set as 1.3 tumor cells per total number of input cells. Clonality was confirmed in 99% and 100% of cases with Sanger and NGS, respectively, showing great concordance (97.9%), although several samples had minor discordances in the nucleotide sequence of rearrangements. Parallel NGS was performed in 82 follow-up cases, achieving a median sensitivity of 0.001%, while for NGF, median sensitivity was 0.0002%. Reproducibility of LymphoTrack-based MRD studies (85.4%) and correlation with NGF (R2 > 0.800) were high. Bland-Altman tests showed highly significant levels of agreement between flow and sequencing. CONCLUSIONS.­: Taken together, we have shown that LymphoTrack is a suitable strategy for clonality detection and MRD evaluation, with results comparable to gold standard procedures.


Subject(s)
Multiple Myeloma , Humans , High-Throughput Nucleotide Sequencing/methods , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Reproducibility of Results
16.
Blood Cancer J ; 11(5): 101, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021118

ABSTRACT

Although case-control analyses have suggested an additive value with the association of clarithromycin to continuous lenalidomide and dexamethasone (Rd), there are not phase III trials confirming these results. In this phase III trial, 286 patients with MM ineligible for ASCT received Rd with or without clarithromycin until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS). With a median follow-up of 19 months (range, 0-54), no significant differences in the median PFS were observed between the two arms (C-Rd 23 months, Rd 29 months; HR 0.783, p = 0.14), despite a higher rate of complete response (CR) or better in the C-Rd group (22.6% vs 14.4%, p = 0.048). The most common G3-4 adverse events were neutropenia [12% vs 19%] and infections [30% vs 25%], similar between the two arms; however, the percentage of toxic deaths was higher in the C-Rd group (36/50 [72%] vs 22/40 [55%], p = 0.09). The addition of clarithromycin to Rd in untreated transplant ineligible MM patients does not improve PFS despite increasing the ≥CR rate due to the higher number of toxic deaths in the C-Rd arm. Side effects related to overexposure to steroids due to its delayed clearance induced by clarithromycin in this elderly population could explain these results. The trial was registered in clinicaltrials.gov with the name GEM-CLARIDEX: Ld vs BiRd and with the following identifier NCT02575144. The full trial protocol can be accessed from ClinicalTrials.gov. This study received financial support from BMS/Celgene.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clarithromycin/therapeutic use , Dexamethasone/therapeutic use , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Clarithromycin/adverse effects , Dexamethasone/adverse effects , Female , Hematopoietic Stem Cell Transplantation , Humans , Lenalidomide/adverse effects , Male , Transplantation, Autologous , Treatment Outcome
17.
Cells ; 10(3)2021 03 04.
Article in English | MEDLINE | ID: mdl-33806619

ABSTRACT

BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM.


Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Multiple Myeloma/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Thiophenes/therapeutic use , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Multiple Myeloma/pathology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology
18.
Cells ; 10(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562668

ABSTRACT

Some genetic abnormalities of multiple myeloma (MM) detected more than two decades ago remain major prognostic factors. In recent years, the introduction of cutting-edge genomic methodologies has enabled the extensive deciphering of genomic events in MM. Although none of the alterations newly discovered have significantly improved the stratification of the outcome of patients with MM, some of them, point mutations in particular, are promising targets for the development of personalized medicine. This review summarizes the main genetic abnormalities described in MM together with their prognostic impact, and the therapeutic approaches potentially aimed at abrogating the undesirable pathogenic effect of each alteration.


Subject(s)
DNA Copy Number Variations/genetics , Genomics/methods , Multiple Myeloma/genetics , Point Mutation/genetics , Humans , Multiple Myeloma/pathology , Prognosis
19.
Blood ; 137(1): 49-60, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32693406

ABSTRACT

Patients with multiple myeloma (MM) carrying standard- or high-risk cytogenetic abnormalities (CAs) achieve similar complete response (CR) rates, but the later have inferior progression-free survival (PFS). This questions the legitimacy of CR as a treatment endpoint and represents a biological conundrum regarding the nature of tumor reservoirs that persist after therapy in high-risk MM. We used next-generation flow (NGF) cytometry to evaluate measurable residual disease (MRD) in MM patients with standard- vs high-risk CAs (n = 300 and 90, respectively) enrolled in the PETHEMA/GEM2012MENOS65 trial, and to identify mechanisms that determine MRD resistance in both patient subgroups (n = 40). The 36-month PFS rates were higher than 90% in patients with standard- or high-risk CAs achieving undetectable MRD. Persistent MRD resulted in a median PFS of âˆ¼3 and 2 years in patients with standard- and high-risk CAs, respectively. Further use of NGF to isolate MRD, followed by whole-exome sequencing of paired diagnostic and MRD tumor cells, revealed greater clonal selection in patients with standard-risk CAs, higher genomic instability with acquisition of new mutations in high-risk MM, and no unifying genetic event driving MRD resistance. Conversely, RNA sequencing of diagnostic and MRD tumor cells uncovered the selection of MRD clones with singular transcriptional programs and reactive oxygen species-mediated MRD resistance in high-risk MM. Our study supports undetectable MRD as a treatment endpoint for patients with MM who have high-risk CAs and proposes characterizing MRD clones to understand and overcome MRD resistance. This trial is registered at www.clinicaltrials.gov as #NCT01916252.


Subject(s)
Drug Resistance, Neoplasm/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm, Residual/pathology , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Boron Compounds/therapeutic use , Bortezomib/therapeutic use , Chromosome Aberrations , Dexamethasone/therapeutic use , Female , Flow Cytometry , Glycine/analogs & derivatives , Glycine/therapeutic use , Humans , Lenalidomide/therapeutic use , Male , Middle Aged , Progression-Free Survival , Treatment Outcome
20.
Blood Adv ; 4(23): 6023-6033, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33284947

ABSTRACT

The search for biomarkers based on the mechanism of drug action has not been thoroughly addressed in the therapeutic approaches to multiple myeloma (MM), mainly because of the difficulty in analyzing proteins obtained from purified plasma cells. Here, we investigated the prognostic impact of the expression of 12 proteins involved in the mechanism of action of bortezomib, lenalidomide, and dexamethasone (VRD), quantified by capillary nanoimmunoassay, in CD138-purified samples from 174 patients with newly diagnosed MM treated according to the PETHEMA/GEM2012 study. A high level of expression of 3 out of 5 proteasome components tested (PSMD1, PSMD4, and PSMD10) negatively influenced survival. The 5 analyzed proteins involved in lenalidomide's mode of action were associated with time to progression (TTP); low levels of cereblon and IRF4 protein and high levels of Ikaros, AGO2, and Aiolos were significantly associated with shorter TTP. Although the glucocorticoid receptor (GCR) level by itself had no significant impact on MM prognosis, a high XPO1 (exportin 1)/GCR ratio was associated with shorter TTP and progression-free survival (PFS). The multivariate Cox model identified high levels of PSMD10 (hazard ratio [HR] TTP, 3.49; P = .036; HR PFS, 5.33; P = .004) and Ikaros (HR TTP, 3.01, P = .014; HR PFS, 2.57; P = .028), and low levels of IRF4 protein expression (HR TTP, 0.33; P = .004; HR PFS, 0.35; P = .004) along with high-risk cytogenetics (HR TTP, 3.13; P < .001; HR PFS, 2.69; P = .002), as independently associated with shorter TTP and PFS. These results highlight the value of assessing proteins related to the mechanism of action of drugs used in MM for predicting treatment outcome.


Subject(s)
Multiple Myeloma , Bortezomib/therapeutic use , Dexamethasone , Humans , Ikaros Transcription Factor , Interferon Regulatory Factors , Lenalidomide , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...