Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38369116

ABSTRACT

Estimating feed efficiency (FE) in dairy sheep is challenging due to the high cost of systems that measure individual feed intake. Identifying proxies that can serve as effective predictors of FE could make it possible to introduce FE into breeding programs. Here, 39 Assaf ewes in first lactation were evaluated regarding their FE by 2 metrics, residual feed intake (RFI) and feed conversion ratio (FCR). The ewes were classified into high, medium and low groups for each metric. Milk samples of the 39 ewes were subjected to untargeted metabolomics analysis. The complete milk metabolomic signature was used to discriminate the FE groups using partial least squares discriminant analysis. A total of 41 and 26 features were selected as the most relevant features for the discrimination of RFI and FCR groups, respectively. The predictive ability when utilizing the complete milk metabolomic signature and the reduced data sets were investigated using 4 machine-learning algorithms and a multivariate regression method. The Orthogonal Partial Least Square algorithm outperformed other ML algorithms for the FCR prediction in the scenarios using the complete milk metabolite signature (r2 = 0.62 ± 0.06) and the 26 selected features (0.62 ± 0.15). Regarding RFI predictions, the scenarios using the 41 selected features outperformed the scenario with the complete milk metabolite signature, where the Multilayer feedforward artificial neural network (r2 = 0.18 ± 0.14) and extreme gradient boosting (r2 = 0.17 ± 0.15) outperformed other algorithms. The functionality of the selected metabolites implied that the metabolism of glucose, galactose, fructose, sphingolipids, amino acids, insulin, and thyroid hormones was at play. Compared with the use of traditional methods, practical applications of these biomarkers might simplify and reduce costs in selecting feed-efficient ewes.

2.
BMC Genomics ; 24(1): 511, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658326

ABSTRACT

BACKGROUND: As the prepubertal stage is a crucial point for the proper development of the mammary gland and milk production, this study aims to evaluate how protein restriction at this stage can affect methylation marks in milk somatic cells. Here, 28 Assaf ewes were subjected to 42.3% nutritional protein restriction (14 animals, NPR) or fed standard diets (14 animals, C) during the prepubertal stage. During the second lactation, the milk somatic cells of these ewes were sampled, and the extracted DNA was subjected to whole-genome bisulfite sequencing. RESULTS: A total of 1154 differentially methylated regions (DMRs) were identified between the NPR and C groups. Indeed, the results of functional enrichment analyses of the genes harboring these DMRs suggested their relevant effects on the development of the mammary gland and lipid metabolism in sheep. The additional analysis of the correlations of the mean methylation levels within these DMRs with fat, protein, and dry extract percentages in the milk and milk somatic cell counts suggested associations between several DMRs and milk production traits. However, there were no phenotypic differences in these traits between the NPR and C groups. CONCLUSION: In light of the above, the results obtained in the current study might suggest potential candidate genes for the regulation of milk production traits in the sheep mammary gland. Further studies focusing on elucidating the genetic mechanisms affected by the identified DMRs may help to better understand the biological mechanisms modified in the mammary gland of dairy sheep as a response to nutritional challenges and their potential effects on milk production.


Subject(s)
Diet, Protein-Restricted , Milk , Animals , Female , Sheep , Epigenesis, Genetic , Cell Count , Lactation
3.
J Dairy Sci ; 105(10): 8199-8217, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36028350

ABSTRACT

The present study aimed to ascertain how different strategies for leveraging genomic information enhance the accuracy of estimated breeding values for milk and cheese-making traits and to evaluate the implementation of a low-density (LowD) SNP chip designed explicitly for that aim. Thus, milk samples from a total of 2,020 dairy ewes from 2 breeds (1,039 Spanish Assaf and 981 Churra) were collected and analyzed to determine 3 milk production and composition traits and 2 traits related to milk coagulation properties and cheese yield. The 2 studied populations were genotyped with a customized 50K Affymetrix SNP chip (Affymetrix Inc.) containing 55,627 SNP markers. The prediction accuracies were obtained using different multitrait methodologies, such as the BLUP model based on pedigree information, the genomic BLUP (GBLUP), and the BLUP at the SNP level (SNP-BLUP), which are based on genotypic data, and the single-step GBLUP (ssGBLUP), which combines both sources of information. All of these methods were analyzed by cross-validation, comparing predictions of the whole population with the test population sets. Additionally, we describe the design of a LowD SNP chip (3K) and its prediction accuracies through the different methods mentioned previously. Furthermore, the results obtained using the LowD SNP chip were compared with those based on the 50K SNP chip data sets. Finally, we conclude that implementing genomic selection through the ssGBLUP model in the current breeding programs would increase the accuracy of the estimated breeding values compared with the BLUP methodology in the Assaf (from 0.19 to 0.39) and Churra (from 0.27 to 0.44) dairy sheep populations. The LowD SNP chip is cost-effective and has proven to be an accurate tool for estimating genomic breeding values for milk and cheese-making traits, microsatellite imputation, and parentage verification. The results presented here suggest that the routine use of this LowD SNP chip could potentially increase the genetic gains of the breeding selection programs of the 2 Spanish dairy sheep breeds considered here.


Subject(s)
Milk , Polymorphism, Single Nucleotide , Animals , Female , Genome , Genomics/methods , Genotype , Phenotype , Sheep/genetics
4.
Anim Genet ; 52(6): 868-880, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34515357

ABSTRACT

Different SNP genotyping technologies are commonly used in multiple studies to perform QTL detection, genotype imputation, and genomic predictions. Therefore, genotyping errors cannot be ignored, as they can reduce the accuracy of different procedures applied in genomic selection, such as genomic imputation, genomic predictions, and false-positive results in genome-wide association studies. Currently, whole-genome resequencing (WGR) also offers the potential for variant calling analysis and high-throughput genotyping. WGR might overshadow array-based genotyping technologies due to the larger amount and precision of the genomic information provided; however, its comparatively higher price per individual still limits its use in larger populations. Thus, the objective of this work was to evaluate the accuracy of the two most popular SNP-chip technologies, namely, Affymetrix and Illumina, for high-throughput genotyping in sheep considering high-coverage WGR datasets as references. Analyses were performed using two reference sheep genome assemblies, the popular Oar_v3.1 reference genome and the latest available version Oar_rambouillet_v1.0. Our results demonstrate that the genotypes from both platforms are suggested to have high concordance rates with the genotypes determined from reference WGR datasets (96.59% and 99.51% for Affymetrix and Illumina technologies, respectively). The concordance results provided in the current study can pinpoint low reproducible markers across multiple platforms used for sheep genotyping data. Comparing results using two reference genome assemblies also informs how genome assembly quality can influence genotype concordance rates among different genotyping platforms. Moreover, we describe an efficient pipeline to test the reliability of markers included in sheep SNP-chip panels against WGR datasets available on public databases. This pipeline may be helpful for discarding low-reliability markers before exploiting genomic information for gene mapping analyses or genomic prediction.


Subject(s)
Genotype , Genotyping Techniques/veterinary , Polymorphism, Single Nucleotide , Sheep, Domestic/genetics , Animals , Male , Spain
5.
J Dairy Sci ; 104(11): 11850-11866, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34454756

ABSTRACT

This study aimed to perform a GWAS to identify genomic regions associated with milk and cheese-making traits in Assaf and Churra dairy sheep breeds; second, it aimed to identify possible positional and functional candidate genes and their interactions through post-GWAS studies. For 2,020 dairy ewes from 2 breeds (1,039 Spanish Assaf and 981 Churra), milk samples were collected and analyzed to determine 6 milk production and composition traits and 6 traits related to milk coagulation properties and cheese yield. The genetic profiles of the ewes were obtained using a genotyping chip array that included 50,934 SNP markers. For both milk and cheese-making traits, separate single-breed GWAS were performed using GCTA software. The set of positional candidate genes identified via GWAS was subjected to guilt-by-association-based prioritization analysis with ToppGene software. Totals of 84 and 139 chromosome-wise significant associations for the 6 milk traits and the 6 cheese-making traits were identified in this study. No significant SNPs were found in common between the 2 studied breeds, possibly due to their genetic heterogeneity of the phenotypes under study. Additionally, 63 and 176 positional candidate genes were located in the genomic intervals defined as confidence regions in relation to the significant SNPs identified for the analyzed traits for Assaf and Churra breeds. After the functional prioritization analysis, 71 genes were identified as promising positional and functional candidate genes and proposed as targets of future research to identify putative causative variants in relation to the traits under examination. In addition, this multitrait study allowed us to identify variants that have a pleiotropic effect on both milk production and cheese-related traits. The incorporation of variants among the proposed functional and positional candidate genes into genomic selection strategies represent an interesting approach for achieving rapid genetic gains, specifically for those traits difficult to measure, such as cheese-making traits.


Subject(s)
Cheese , Genome-Wide Association Study , Animals , Female , Genome-Wide Association Study/veterinary , Milk , Phenotype , Polymorphism, Single Nucleotide/genetics , Sheep/genetics
6.
J Dairy Sci ; 104(3): 3250-3260, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33455788

ABSTRACT

The global production of sheep milk is growing, and the main industrial use of sheep milk is cheese making. The Spanish Churra sheep breed is one of the most important native dairy breeds in Spain. The present study aimed to estimate genetic parameters for a wide range of traits influencing the cheese-making ability of Churra sheep milk. Using a total of 1,049 Churra ewes, we studied the following cheese-making traits: 4 traits related to milk coagulation properties (rennet coagulation time, curd-firming time, and curd firmness at 30 and 60 min after addition of rennet), 2 traits related to cheese yield (individual laboratory cheese yield and individual laboratory dried curd yield), and 3 traits measuring curd firmness over time (maximum curd firmness, time to attain maximum curd firmness, and syneresis). In addition, a list of milk traits, including the native pH of the milk and several milk production and composition traits (milk yield; the fat, protein, and dried extract percentages; and the somatic cell count), were also analyzed for the studied animals. After discarding the noncoagulating samples (only 3.7%), data of 1,010 ewes were analyzed with multiple-trait animal models by using the restricted maximum likelihood method to estimate (co)variance components, heritabilities, and genetic correlations. In general, the heritability estimates were low to moderate, ranging from 0.08 (for the individual laboratory dried curd yield trait) to 0.42 (for the fat percentage trait). High genetic correlations were found within pairs of related traits (i.e., 0.93 between fat and dried extract percentages, -0.93 between the log of the curd-firming time and curd firmness at 30 min, 0.70 between individual laboratory cheese yield and individual laboratory dried curd yield, and -0.94 between time to attain maximum curd firmness and syneresis). Considering all the information provided here, we suggest that in addition to the current consideration of the protein percentage trait for improving cheese yield traits, the inclusion of the pH of milk as a measured trait in the Churra dairy breeding program would represent an efficient strategy for improving the cheese-making ability of milk from this breed.


Subject(s)
Cheese , Animals , Cell Count/veterinary , Female , Milk , Milk Proteins , Phenotype , Sheep/genetics , Spain
7.
Anim Genet ; 51(2): 266-277, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31900978

ABSTRACT

In dairy sheep flocks from Mediterranean countries, replacement and adult ewes are the animals most affected by gastrointestinal nematode (GIN) infections. In this study, we have exploited the information derived from an RNA-Seq experiment with the aim of identifying potential causal mutations related to GIN resistance in sheep. Considering the RNA-Seq samples from 12 ewes previously classified as six resistant and six susceptible animals to experimental infection by Teladorsagia circumcincta, we performed a variant calling analysis pipeline using two different types of software, gatk version 3.7 and Samtools version 1.4. The variants commonly identified by the two packages (high-quality variants) within two types of target regions - (i) QTL regions previously reported in sheep for parasite resistance based on SNP-chip or sequencing technology studies and (ii) functional candidate genes selected from gene expression studies related to GIN resistance in sheep - were further characterised to identify mutations with a potential functional impact. Among the genes harbouring these potential functional variants (930 and 553 respectively for the two types of regions), we identified 111 immune-related genes in the QTL regions and 132 immune-related genes from the initially selected candidate genes. For these immune-related genes harbouring potential functional variants, the enrichment analyses performed highlighted significant GO terms related to apoptosis, adhesion and inflammatory response, in relation to the QTL related variants, and significant disease-related terms such as inflammation, adhesion and necrosis, in relation to the initial candidate gene list. Overall, the study provides a valuable list of potential causal mutations that could be considered as candidate causal mutations in relation to GIN resistance in sheep. Future studies should assess the role of these suggested mutations with the aim of identifying genetic markers that could be directly implemented in sheep breeding programmes considering not only production traits, but also functional traits such as resistance to GIN infections.


Subject(s)
Disease Resistance/genetics , Gastrointestinal Diseases/veterinary , Sheep Diseases/genetics , Trichostrongyloidea/physiology , Trichostrongyloidiasis/veterinary , Animals , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/parasitology , RNA-Seq/veterinary , Sheep , Sheep Diseases/parasitology , Trichostrongyloidiasis/genetics , Trichostrongyloidiasis/parasitology
8.
Anim Genet ; 49(6): 605-617, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30311245

ABSTRACT

Adipose deposits influence the quality of ruminant carcasses, and in suckling lambs, internal types of adipose deposits represent a notable proportion of total fat. The aim of this study was to perform a comparative analysis of the perirenal fat transcriptomes of suckling lambs from two breeds with different growth and carcass characteristics. The perirenal fat tissue from 14 suckling lambs (Assaf, n = 8; Churra, n = 6) was used for the RNA-seq analysis. The functional enrichment analysis of the 670 highly expressed genes (>150 fragments per kilobase of exon per million fragments mapped) in the perirenal fat transcriptome of both breeds revealed that the majority of these genes were involved in energy processes. The expression of the UCP1 gene, a classical biomarker of brown fat, and the presence of multilocular adipocytes in the two breeds supported the presence of brown fat at the transition stage towards white fat tissue. The differential expression analysis performed identified 373 differentially expressed genes (DEGs) between the two compared breeds. Brown/white fat gene biomarkers were not included in the list of DEGs. In Assaf lambs, DEGs were enriched in Gene Ontology (GO) biological processes related to fatty-acid oxidation, whereas in Churra lambs, the majority of the significantly enriched GO terms were related to cholesterol synthesis, which suggests that upregulated DEGs in Assaf lambs are implicated in fat burning, whereas the Churra upregulated DEGs are linked to fat accumulation. These results can help to increase knowledge of the genes controlling early fat deposition in ruminants and shed light on fundamental aspects of adipose tissue growth.


Subject(s)
Breeding , Intra-Abdominal Fat , Sheep/genetics , Transcriptome , Adipose Tissue, Brown , Adipose Tissue, White , Animals , Kidney , Lipid Metabolism , Male , Meat , Sequence Analysis, RNA
9.
J Dairy Sci ; 101(10): 9072-9088, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30100503

ABSTRACT

This study presents a scan of the ovine genome to identify quantitative trait loci (QTL) influencing the somatic cell score (SCS), a classical indicator of subclinical mastitis in sheep, and a subsequent high-resolution analysis of one of the identified QTL regions based on the analysis of whole-genome sequence data sets. A half-sib commercial population of Churra sheep genotyped with a 50K SNP chip was analyzed using linkage analysis (LA) and combined linkage and linkage disequilibrium analysis (LDLA). By LA, 2 5% chromosome-wide significant QTL on OAR5 and OAR25 and one 5% genome-wide significant QTL on ovine chromosome 20 (OAR20) were detected, whereas 22 significant associations were identified by LDLA. Two of the associations detected by LDLA replicated LA-detected effects (OAR20, OAR25). We compared the detected associations with previously reported QTL in sheep and cattle, and functional candidate genes were identified within the estimated confidence intervals. We then performed a high-resolution analysis of the OAR20 QTL region, the most significant QTL region identified by LA that replicated a QTL previously described in Churra sheep for SCS using microsatellite markers. For that, 2 segregating trios of 2 segregating families for the OAR20 QTL (each including the Qq sire and 2 daughters, QQ and qq) were selected for whole-genome sequencing. The bioinformatic analysis of the 6 sequenced samples performed across the genomic interval considered (14.2-41.7 Mb) identified a total of 227,030 variants commonly identified by 2 independent software packages. For the 3 different concordance tests considered, due to discrepancies regarding the QTL peak in the segregating families, the list of mutations concordant with the QTL segregating pattern was processed to identify the variants identified in immune-related genes that show a moderate/high impact on the encoded protein function. Among a list of 85 missense variants concordant with the QTL segregation pattern that were within candidate immune-related genes, 13 variants distributed across 7 genes [PKHD1, NOTCH4, AGER, ENSOARG00000009395 (HLA-C, Homo sapiens), ENSOARG00000015002 (HLA-B, H. sapiens), MOG, and ENSOARG00000018075 (BoLA, Bos taurus, orthologous to human HLA-A] were predicted to cause deleterious effects on protein function. Future studies should assess the possible associations of the candidate variants identified herein in commercial populations with indicator traits of udder inflammation (SCS, clinical mastitis).


Subject(s)
Mastitis/veterinary , Milk/cytology , Quantitative Trait Loci , Sheep/genetics , Animals , Chromosome Mapping , Female , Genetic Linkage , Genotype , Linkage Disequilibrium , Mastitis/genetics , Polymorphism, Single Nucleotide
10.
Animal ; 12(5): 1093-1101, 2018 May.
Article in English | MEDLINE | ID: mdl-28965526

ABSTRACT

Suckling lamb meat is traditionally produced in Mediterranean Europe. Breed can affect the quality of the lamb carcass and meat. This study is aimed at comparing the carcass and meat quality between suckling lambs from a local and a non-native dairy breed, Churra and Assaf. Churra is included in the Spanish Protected Geographical Indication (PGI) 'Lechazo de Castilla y León', whereas Assaf is not. However, Assaf breeders have requested the inclusion of the breed in the PGI. Carcasses and meat from 16 male lambs (eight Churra and eight Assaf) were used in this study. The lambs were all raised under an intensive rearing system and fed on a milk substitute to minimise maternal influence. The carcasses were evaluated for conformation, fatness, joint and leg tissue proportions and the meat was analysed for composition (i.e. proximate composition, iron, haematin, fatty acids and volatiles) and technological quality traits (i.e. texture, water holding capacity, colour and lipid stability). Churra carcasses were larger than Assaf carcasses. However, the proportions of commercial joints and main tissues did not differ between breeds. Cavity and intermuscular leg fat, but not total leg fat, were higher in Churra carcasses. Churra meat showed a higher proportion of n-6 fatty acids, higher redness and better colour stability during aerobic storage. In contrast, Assaf lamb was more resistant to lipid oxidation after cooking. This is a preliminary study to measure the influence of breed on a wide range of quality characteristics in Churra and Assaf suckling lamb carcass and meat. It may be of relevance for breeders, consumers and food policy makers, setting the basis for future studies that include larger commercial populations.


Subject(s)
Fatty Acids/metabolism , Milk/metabolism , Red Meat/analysis , Sheep/physiology , Animals , Male , Red Meat/standards
11.
Anim Genet ; 48(4): 436-446, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28543827

ABSTRACT

In this study, the availability of the Ovine HD SNP BeadChip (HD-chip) and the development of an imputation strategy provided an opportunity to further investigate the extent of linkage disequilibrium (LD) at short distances in the genome of the Spanish Churra dairy sheep breed. A population of 1686 animals, including 16 rams and their half-sib daughters, previously genotyped for the 50K-chip, was imputed to the HD-chip density based on a reference population of 335 individuals. After assessing the imputation accuracy for beagle v4.0 (0.922) and fimpute v2.2 (0.921) using a cross-validation approach, the imputed HD-chip genotypes obtained with beagle were used to update the estimates of LD and effective population size for the studied population. The imputed genotypes were also used to assess the degree of homozygosity by calculating runs of homozygosity and to obtain genomic-based inbreeding coefficients. The updated LD estimations provided evidence that the extent of LD in Churra sheep is even shorter than that reported based on the 50K-chip and is one of the shortest extents compared with other sheep breeds. Through different comparisons we have also assessed the impact of imputation on LD and effective population size estimates. The inbreeding coefficient, considering the total length of the run of homozygosity, showed an average estimate (0.0404) lower than the critical level. Overall, the improved accuracy of the updated LD estimates suggests that the HD-chip, combined with an imputation strategy, offers a powerful tool that will increase the opportunities to identify genuine marker-phenotype associations and to successfully implement genomic selection in Churra sheep.


Subject(s)
Breeding , Inbreeding , Linkage Disequilibrium , Sheep, Domestic/genetics , Animals , Female , Genotype , Homozygote , Male , Oligonucleotide Array Sequence Analysis/veterinary , Phenotype , Polymorphism, Single Nucleotide , Population Density , Spain
12.
BMC Vet Res ; 12: 97, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27283535

ABSTRACT

BACKGROUND: In this study, two traits related with resistance to gastrointestinal nematodes (GIN) were measured in 529 adult sheep: faecal egg count (FEC) and activity of immunoglobulin A in plasma (IgA). In dry years, FEC can be very low in semi-extensive systems, such as the one studied here, which makes identifying animals that are resistant or susceptible to infection a difficult task. A zero inflated negative binomial model (ZINB) model was used to calculate the extent of zero inflation for FEC; the model was extended to include information from the IgA responses. RESULTS: In this dataset, 64% of animals had zero FEC while the ZINB model suggested that 38% of sheep had not been recently infected with GIN. Therefore 26% of sheep were predicted to be infected animals with egg counts that were zero or below the detection limit and likely to be relatively resistant to nematode infection. IgA activities of all animals were then used to decide which of the sheep with zero egg counts had been exposed and which sheep had not been recently exposed. Animals with zero FEC and high IgA activity were considered resistant while animals with zero FEC and low IgA activity were considered as not recently infected. For the animals considered as exposed to the infection, the correlations among the studied traits were estimated, and the influence of these traits on the discrimination between unexposed and infected animals was assessed. CONCLUSIONS: The model presented here improved the detection of infected animals with zero FEC. The correlations calculated here will be useful in the development of a reliable index of GIN resistance that could be of assistance for the study of host resistance in studies based on natural infection, especially in adult sheep, and also the design of breeding programs aimed at increasing resistance to parasites.


Subject(s)
Intestinal Diseases, Parasitic/veterinary , Models, Statistical , Nematode Infections/veterinary , Sheep Diseases/parasitology , Animals , Female , Immunoglobulin A/blood , Parasite Egg Count/veterinary , Phenotype , Sheep
13.
J Dairy Sci ; 99(8): 6381-6390, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27179853

ABSTRACT

Because ewe milk is principally used for cheese making, its quality is related to its content of total solids and the way in which milk constituents influence cheese yield and determine the technological and organoleptic characteristics of dairy products. Therefore, an in-depth knowledge of the expression levels of milk genes influencing cheese-related traits is essential. In the present study, the milk transcriptome data set of 2 dairy sheep breeds, Assaf and Spanish Churra, was used to evaluate the expression levels of 77 transcripts related to cheese yield and quality traits. For the comparison between both breeds, we selected the RNA sequencing (RNA-Seq) data at d 10 of lactation because this is the time point at which within and between breed differences due to lactation length are minimal. The evaluated genes encode major milk proteins (caseins and whey proteins), endogenous proteases, and enzymes related to fatty acid metabolism and citrate content. Through this analysis, we identified the genes predominantly expressed in each of the analyzed pathways that appear to be key genes for traits related to sheep milk cheese. Among the highly expressed genes in both breeds were the genes encoding caseins and whey proteins (CSN2, CSN3, CSN1S1, ENSOARG00000005099/PAEP, CSN1S2, LALBA), genes related to lipid metabolism (BTN1A1, XDH, FASN, ADFP, SCD, H-FABP, ACSS2), and one endogenous protease (CTSB). Moreover, a differential expression analysis between Churra and Assaf sheep allowed us to identify 7 genes that are significantly differentially expressed between the 2 breeds. These genes were mainly linked to endogenous protease activity (CTSL, CTSK, KLK10, KLK6, SERPINE2). Additionally, there were 2 differentially expressed genes coding for an intracellular fatty acid transporter (FABP4), an intermediate molecule of the citric acid cycle (SUCNR1), and 2 heat shock proteins (HSP70, HSPB8) that could be related to high protein production. The differential expression of these genes could have a direct influence on the different phenotypes observed between the 2 analyzed breeds.


Subject(s)
Milk/chemistry , Sheep/genetics , Animals , Caseins , Cheese , Milk Proteins , Serpin E2 , Transcriptome
14.
Animal ; 8(2): 200-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24433957

ABSTRACT

Nuclear genetic diversity and differentiation of 341 sheep belonging to 12 sheep breeds from Croatia and Bosnia and Herzegovina were examined. The aim of the study was to provide the understanding of the genetic structure and variability of the analysed pramenka sheep populations, and to give indications for conservation strategies based on the population diversity and structure information. The genetic variation of the sheep populations, examined at the nuclear level using 27 microsatellite loci, revealed considerable levels of genetic diversity, similar to the diversity found in other European indigenous low-production sheep breeds. Population-specific alleles were detected at most loci and in breeds analysed. The observed heterozygosity ranged from 0.643 (in Lika pramenka) to 0.743 (in Vlasic pramenka), and the expected heterozygosity ranged from 0.646 (in Lika pramenka) to 0.756 (in Dalmatian pramenka). Significant inbreeding coefficients were found for half of the populations studied and ranged from 0.040 (Pag island sheep) to 0.091 (Kupres pramenka). Moderate genetic differentiation was found between the studied sheep populations. The total genetic variability observed between different populations was 5.29%, whereas 94.71% of the variation was found within populations. Cres island sheep, Lika pramenka and Istrian sheep were identified as the most distinct populations, which was confirmed by the factorial analysis of correspondence and supported through a bootstrapping adjustment to correct for the difference in the sample sizes. The population structure analysis distinguished 12 clusters for the 12 sheep breeds analysed. However, the cluster differentiation was low for Dalmatian, Vlasic, Stolac and Krk pramenka. This systematic study identified Lika pramenka and Rab island sheep as those with the lowest diversity, whereas Istrian sheep and Pag island sheep had the highest. Conservation actions are proposed for Istrian, Rab and Cres island sheep, Lika and Kupres pramenka because of high estimated coefficients of inbreeding.


Subject(s)
Biological Evolution , Genetic Variation , Microsatellite Repeats/genetics , Sheep/genetics , Analysis of Variance , Animals , Bosnia and Herzegovina , Croatia , Gene Frequency , Genetic Carrier Screening , Genetics, Population , Species Specificity
15.
J Dairy Sci ; 96(9): 6059-69, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23810588

ABSTRACT

In this study, 2 procedures were used to analyze a data set from a whole-genome scan, one based on linkage analysis information and the other combing linkage disequilibrium and linkage analysis (LDLA), to determine the quantitative trait loci (QTL) influencing milk production traits in sheep. A total of 1,696 animals from 16 half-sib families were genotyped using the OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) and analysis was performed using a daughter design. Moreover, the same data set has been previously investigated through a genome-wide association (GWA) analysis and a comparison of results from the 3 methods has been possible. The linkage analysis and LDLA methodologies yielded different results, although some significantly associated regions were common to both procedures. The linkage analysis detected 3 overlapping genome-wise significant QTL on sheep chromosome (OAR) 2 influencing milk yield, protein yield, and fat yield, whereas 34 genome-wise significant QTL regions were detected using the LDLA approach. The most significant QTL for protein and fat percentages was detected on OAR3, which was reported in a previous GWA analysis. Both the linkage analysis and LDLA identified many other chromosome-wise significant associations across different sheep autosomes. Additional analyses were performed on OAR2 and OAR3 to determine the possible causality of the most significant polymorphisms identified for these genetic effects by the previously reported GWA analysis. For OAR3, the analyses demonstrated additional genetic proof of the causality previously suggested by our group for a single nucleotide polymorphism located in the α-lactalbumin gene (LALBA). In summary, although the results shown here suggest that in commercial dairy populations, the LDLA method exhibits a higher efficiency to map QTL than the simple linkage analysis or linkage disequilibrium methods, we believe that comparing the 3 analysis methods is the best approach to obtain a global picture of all identifiable QTL segregating in the population at both family-based and population-based levels.


Subject(s)
Genetic Linkage/genetics , Lactation/genetics , Linkage Disequilibrium/genetics , Quantitative Trait Loci/genetics , Sheep/genetics , Animals , Female , Genetic Markers/genetics , Milk/chemistry , Oligonucleotide Array Sequence Analysis/veterinary , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
16.
J Anim Breed Genet ; 130(4): 321-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23855634

ABSTRACT

South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations.


Subject(s)
Camelids, New World/genetics , Genetic Variation , Microsatellite Repeats/genetics , Animals , Breeding , Camelids, New World/anatomy & histology , Genetic Loci/genetics , Male , Meat , Phenotype
17.
Anim Genet ; 44(2): 158-68, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22640259

ABSTRACT

The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT-CYB gene and 513 bp of the D-loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT-CYB was more variable than D-loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D-loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations.


Subject(s)
Camelids, New World/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Phylogeny , Analysis of Variance , Animals , Base Sequence , Bayes Theorem , Bolivia , Camelids, New World/classification , Chile , Cluster Analysis , Haplotypes/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA/veterinary , Species Specificity
18.
Anim Genet ; 43(6): 654-61, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22497262

ABSTRACT

A previous analysis of an F(2) /Backcross Charolais × Holstein cross population identified the presence of a highly significant QTL on chromosome 6 (BTA6) affecting the proportion of bone in the carcass. Two closely linked QTL affected birth weight (BW) and body length at birth (BBL). In this report, the marker density around the QTL on BTA6 was increased, adding four additional microsatellite markers across the chromosome and 46 SNPs within the target QTL confidence interval. Of the SNPs, 26 were in positional candidate genes and the remaining 20 provided an even distribution of markers in the target QTL region. As a bone-related trait, the sum of the bone weight for all the left fore- and hindquarter joints of the carcass was analysed. We also studied the BW and BBL. Analyses of the data substantially reduced the QTL confidence interval. No strong evidence was found that the QTL for the three traits studied are different, and we conclude that the results are consistent with a single pleiotropic QTL influencing the three traits, with the largest effects on the proportion of bone in the carcass. The analyses also suggest that none of the SNPs tested is the sole causative variant of the QTL effects. Specifically, the SNP in the NCAPG gene previously reported as a causal mutation for foetal growth and carcass traits in other cattle populations was excluded as the causal mutation for the QTL reported here. Polymorphisms located in other previously identified candidate genes including SPP1, ABCG2, IBSP, MEPE and PPARGC1A were also excluded. The results suggest that SNP51_BTA-119876 is the polymorphism in strongest linkage disequilibrium with the causal mutation(s). Further research is required to identify the causal variant(s) associated with this bone-related QTL.


Subject(s)
Body Weight/genetics , Bone and Bones , Cattle/anatomy & histology , Chromosome Mapping/veterinary , Chromosomes, Mammalian/genetics , Quantitative Trait Loci/genetics , Animals , Birth Weight/genetics , Cattle/genetics , Cattle/growth & development , Genetic Markers , Genotype , Polymorphism, Single Nucleotide
19.
Anim Genet ; 43(5): 636-41, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22497507

ABSTRACT

A previous genome scan that was conducted in Spanish Churra sheep identified a significant quantitative trait locus (QTL) for milk protein percentage (PP) on chromosome 3 (OAR3), between markers KD103 and OARVH34. The aim of this study was to replicate these results and to refine the mapped position of this QTL. To accomplish this goal, we analysed 14 new half-sib families of Spanish Churra sheep including 1661 ewes from 29 different flocks. These animals were genotyped for 21 microsatellite markers mapping to OAR3. In addition to a classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) was performed with the aim of enhancing the resolution of the QTL mapping. The LA that was performed in this sheep population identified the presence of a highly significant QTL for PP near marker KD103 (P(c) < 0.001; P(exp) < 0.001). The phenotypic variance that was owing to the QTL was 2.74%. Two segregating families for the target QTL were identified in this population with QTL effect estimates of 0.47 and 0.95 SD. The LDLA identified the same QTL as the previous analyses with a high level of statistical significance (P = 9.184 E-11) and narrowed the confidence interval (CI) to a 13 cM region. These results confirm the segregation of the previously identified OAR3 QTL that influences PP in Spanish Churra sheep. Future research will aim to increase the marker density across the refined CI and to analyse the corresponding candidate genes to identify the allelic variant or variants that underlie this genetic effect.


Subject(s)
Milk/metabolism , Quantitative Trait Loci , Sheep/genetics , Sheep/metabolism , Animals , Chromosome Mapping , Female , Genetic Linkage , Genotype , Microsatellite Repeats
20.
J Dairy Sci ; 94(8): 4119-28, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21787947

ABSTRACT

A genome scan for chromosomal regions influencing body conformation traits was conducted for a population of Spanish Churra dairy sheep following a daughter design. A total of 739 ewes from 11 half-sib sire families were included in the study. The ewes were scored for the 5 linear traits used in the breeding scheme of the Churra breed to assess body conformation: stature, rear legs-rear view, foot angle, rump width, and general appearance. All the animals, including the 11 sires, were genotyped for 181 microsatellite markers evenly distributed across the 26 sheep autosomes. Using the yield deviations of the raw scores adjusted for fixed factors as phenotypic measurements, a quantitative trait loci (QTL) analysis was performed on the basis of a multi-marker regression method. Seven suggestive QTL were identified on chromosomes Ovis aries (OAR)2, OAR5, OAR16, OAR23, and OAR26, but none reached a genome-wise significance level. Putative QTL were identified for all of the traits analyzed, except for general appearance score. The suggestive QTL showing the highest test statistic influenced rear legs-rear view and was localized on OAR16, close to the growth hormone receptor coding gene, GHR. Some of the putative linkage associations reported here are consistent with previously reported QTL in cattle for similar traits. To the best of our knowledge, this study provides the first report of QTL for body conformation traits in dairy sheep; further studies will be needed to confirm and redefine the linkage associations reported herein. It is expected that future genome-wide association analyses of larger families will help identify genes underlying these putative genetic effects and provide useful markers for marker-assisted selection of such functional traits.


Subject(s)
Quantitative Trait Loci/genetics , Sheep/genetics , Animals , Biometry , Chromosome Mapping/veterinary , Female , Genome/genetics , Genotype , Male , Phenotype , Sheep/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...