Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834396

ABSTRACT

Parasitic diseases, including giardiasis caused by Giardia lamblia (G. lamblia), present a considerable global health burden. The limited effectiveness and adverse effects of current treatment options underscore the necessity for novel therapeutic compounds. In this study, we employed a rational design strategy to synthesize retroalbendazole (RetroABZ), aiming to address the limitations associated with albendazole, a commonly used drug for giardiasis treatment. RetroABZ exhibited enhanced in vitro activity against G. lamblia trophozoites, demonstrating nanomolar potency (IC50 = 83 nM), outperforming albendazole (189 nM). Moreover, our in vivo murine model of giardiasis displayed a strong correlation, supporting the efficacy of RetroABZ, which exhibited an eleven-fold increase in potency compared to albendazole, with median effective dose (ED50) values of 5 µg/kg and 55 µg/kg, respectively. A notable finding was RetroABZ's significantly improved water solubility (245.74 µg/mL), representing a 23-fold increase compared to albendazole, thereby offering potential opportunities for developing derivatives that effectively target invasive parasites. The molecular docking study revealed that RetroABZ displays an interaction profile with tubulin similar to albendazole, forming hydrogen bonds with Glu198 and Cys236 of the ß-tubulin. Additionally, molecular dynamics studies demonstrated that RetroABZ has a greater number of hydrophobic interactions with the binding site in the ß-tubulin, due to the orientation of the propylthio substituent. Consequently, RetroABZ exhibited a higher affinity compared to albendazole. Overall, our findings underscore RetroABZ's potential as a promising therapeutic candidate not only for giardiasis but also for other parasitic diseases.


Subject(s)
Antiprotozoal Agents , Giardia lamblia , Giardiasis , Animals , Mice , Albendazole/chemistry , Giardiasis/drug therapy , Giardiasis/parasitology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Tubulin , Molecular Docking Simulation , Solubility
2.
Biomed Pharmacother ; 108: 670-678, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30245467

ABSTRACT

In this study, we synthesized five N-Boc-L-tyrosine-based analogues to glitazars. The in vitro effects of compounds 1-5 on protein tyrosine phosphatase 1B (PTP-1B), peroxisome proliferator-activated receptor alpha and gamma (PPARα/γ), glucose transporter type-4 (GLUT-4) and fatty acid transport protein-1 (FATP-1) activation are reported in this paper. Compounds 1 and 3 were the most active in the in vitro PTP-1B inhibition assay, showing IC50s of approximately 44 µM. Treatment of adipocytes with compound 1 increased the mRNA expression of PPARγ and GLUT-4 by 8- and 3-fold, respectively. Moreover, both compounds (1 and 3) also increased the relative mRNA expression of PPARα (by 8-fold) and FATP-1 (by 15-fold). Molecular docking studies were performed in order to elucidate the polypharmacological binding mode of the most active compounds on these targets. Finally, a murine model of hyperglycemia was used to evaluate the in vivo effectiveness of compounds 1 and 3. We found that both compounds are orally active using an exploratory dose of 100 mg/kg, decreasing the blood glucose concentration in an oral glucose tolerance test and a non-insulin-dependent diabetes mellitus murine model. In conclusion, we demonstrated that both molecules showed strong in vitro and in vivo effects and can be considered polypharmacological antidiabetic candidates.


Subject(s)
Hypoglycemic Agents/pharmacology , Tyrosine/pharmacology , 3T3 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Blood Glucose/drug effects , Cell Line , Computer Simulation , Disease Models, Animal , Fatty Acid Transport Proteins/metabolism , Glucose Tolerance Test/methods , Glucose Transporter Type 4/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Mice , Molecular Docking Simulation , PPAR gamma/metabolism , RNA, Messenger/metabolism
3.
Molecules ; 23(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415496

ABSTRACT

We have synthesized a small series of five 3-[4-arylmethoxy)phenyl]propanoic acids employing an easy and short synthetic pathway. The compounds were tested in vitro against a set of four protein targets identified as key elements in diabetes: G protein-coupled receptor 40 (GPR40), aldose reductase (AKR1B1), peroxisome proliferator-activated receptor gama (PPARγ) and solute carrier family 2 (facilitated glucose transporter), member 4 (GLUT-4). Compound 1 displayed an EC50 value of 0.075 µM against GPR40 and was an AKR1B1 inhibitor, showing IC50 = 7.4 µM. Compounds 2 and 3 act as slightly AKR1B1 inhibitors, potent GPR40 agonists and showed an increase of 2 to 4-times in the mRNA expression of PPARγ, as well as the GLUT-4 levels. Docking studies were conducted in order to explain the polypharmacological mode of action and the interaction binding mode of the most active molecules on these targets, showing several coincidences with co-crystal ligands. Compounds 1-3 were tested in vivo at an explorative 100 mg/kg dose, being 2 and 3 orally actives, reducing glucose levels in a non-insulin-dependent diabetes mice model. Compounds 2 and 3 displayed robust in vitro potency and in vivo efficacy, and could be considered as promising multitarget antidiabetic candidates. This is the first report of a single molecule with these four polypharmacological target action.


Subject(s)
Drug Design , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Aldehyde Reductase/antagonists & inhibitors , Animals , Binding Sites , Cell Line , Cells, Cultured , Chemistry Techniques, Synthetic , Glucose Transporter Type 4/agonists , Glucose Transporter Type 4/chemistry , Glucose Transporter Type 4/metabolism , Humans , Hypoglycemic Agents/chemical synthesis , Ligands , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Molecular Targeted Therapy , PPAR gamma/antagonists & inhibitors , PPAR gamma/chemistry , Phenylpropionates/chemical synthesis , Protein Binding , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...