Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 474(16): 2679-2689, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28666999

ABSTRACT

The mechanisms controlling degradation of cytosolic ß-catenin are important for regulating ß-catenin co-transcriptional activity. Loss of von Hippel-Lindau protein (pVHL) has been shown to stabilize ß-catenin, increasing ß-catenin transactivation and ß-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of ß-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active ß-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble ß-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/ß-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces ß-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of ß-catenin signaling due to pVHL loss.


Subject(s)
14-3-3 Proteins/biosynthesis , Cell Proliferation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , beta Catenin/metabolism , 14-3-3 Proteins/genetics , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , beta Catenin/genetics
2.
Biochem J ; 473(21): 3805-3818, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27538402

ABSTRACT

The gastrointestinal tract is the largest hormone-producing organ in the body due to a specialized cell population called enteroendocrine cells (EECs). The number of EECs increases in the mucosa of inflammatory bowel disease patients; however, the mechanisms responsible for these changes remain unknown. Here, we show that the pro-inflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα) or dextran sulfate sodium (DSS)-induced colitis increase the number of EECs producing chromogranin A (CgA) in the colonic mucosa of C57BL/6J mice. CgA-positive cells were non-proliferating cells enriched with inactive phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and autophagy markers. Moreover, inhibition of Akt and autophagy prevented the increase in CgA-positive cells after IFNγ/TNFα treatment. Similarly, we observed that CgA-positive cells in the colonic mucosa of patients with colitis expressed Akt and autophagy markers. These findings suggest that Akt signaling and autophagy control differentiation of the intestinal EEC lineage during inflammation.


Subject(s)
Chromogranin A/metabolism , Colon/cytology , Cytokines/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Neuroendocrine Cells/drug effects , Neuroendocrine Cells/metabolism , Animals , Autophagy/drug effects , Blotting, Western , Caco-2 Cells , Colitis/metabolism , Fluorescent Antibody Technique , Humans , Interferon-gamma/pharmacology , Interleukin-1beta/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...