Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Article in English | MEDLINE | ID: mdl-39358106

ABSTRACT

BACKGROUND AND AIM: The Mediterranean diet is a plant-based dietary pattern with well-established health benefits such as the reduced risk of cardiovascular disease. Additionally, incorporating more plant-based foods into a Mediterranean diet may provide further health benefits. The study aimed to assess the effect of shifting from a traditional Mediterranean diet to a vegan Mediterranean diet on cardiorespiratory fitness and lipid profile in physically active and healthy men. METHODS AND RESULTS: Participants underwent a baseline period with adhesion to the general patterns of the Mediterranean diet for three weeks and then they changed to an isocaloric vegan version of the Mediterranean diet for four weeks, with a 7-day washout period between diets. The shift from the traditional Mediterranean diet to the vegan Mediterranean diet required substituting animal-based foods with plant-based foods that contain comparable amounts of protein and fat. Fourteen participants with a mean age of 24.6 ± 7.0 years (range: 18-37 years), completed the study protocol. The change from the traditional to the vegan Mediterranean diet reduced blood concentration of total cholesterol (-22.6 mg/dl, p < 0.01, Effect size [ES] = 1.07) and low-density lipoprotein cholesterol (-12.8 mg/dl, p < 0.01, ES = 0.72). An inverse correlation was observed between the intake of dietary fibre and LDL-C (partial rho = -0.43, p = 0.040). CONCLUSIONS: The adoption of a vegan Mediterranean diet with plant-based proteins and fats instead of the traditional Mediterranean diet improved several cardiometabolic health outcomes in physically active and healthy men. CLINICAL TRIAL REGISTRY: NCT06008886.

3.
Eur J Nutr ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007997

ABSTRACT

PURPOSE: The aim of this study was to determine the influence of the CYP1A2 c.-163 A > C (rs762551) polymorphism on the effect of oral caffeine intake on fat oxidation during exercise. METHODS: Using a pilot randomized, double-blind, crossover, placebo-controlled trial, 32 young and healthy individuals (women = 14, men = 18) performed an incremental test on a cycle ergometer with 3-min stages at workloads from 30 to 70% of maximal oxygen uptake (VO2max). Participants performed this test after the ingestion of (a) placebo; (b) 3 mg/kg of caffeine; (c) 6 mg/kg of caffeine. Fat oxidation rate during exercise was measured by indirect calorimetry. The influence of the CYP1A2 c.-163 A > C polymorphism in the effect of caffeine on fat oxidation rates during exercise was established with a three-way ANOVA (substance × genotype × intensity). RESULTS: Eight participants were genotyped as AA, 18 participants were CA heterozygotes, and 6 participants were CC. There was a main effect of substance (F = 3.348, p = 0.050) on fat oxidation rates during exercise with no genotype effect (F = 0.158, p = 0.959). The post hoc analysis revealed that, in comparison to the placebo, 3 and 6 mg/kg of caffeine increased fat oxidation at 40-50% VO2max in AA (all p < 0.050) and 50-60% VO2max in CA and CC participants (all p < 0.050). CONCLUSION: Oral intake of 3 and 6 mg/kg of caffeine increased fat oxidation rate during aerobic exercise in individuals with AA, CA and CC genotypes. This suggests that the effect of caffeine to enhance fat oxidation during exercise is not influenced by the CYP1A2 c.-163 A > C polymorphism. TRIAL REGISTRATION: The study was registered on clinicaltrials.gov with ID: NCT05975489.

4.
Eur J Appl Physiol ; 124(3): 849-859, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37728787

ABSTRACT

PURPOSE: Caffeine is a stimulant with well-recognized performance and metabolic benefits, however, there is a lack of studies investigating the time-of-day influence in the properties of caffeine to enhance fat oxidation in women. Thus, the aim of the present study was to evaluate the influence of the time of the day on the effect of caffeine on the maximal rate of fat oxidation during aerobic exercise in trained women. METHODS: Fourteen female athletes (25.5 ± 7.1 years) took part in a randomized, crossover, double-blind study. All participants undertook four different experimental trials combining the ingestion of 3 mg/kg caffeine and a placebo either in the morning (8.00-10.00 h) and in the evening (17.00-19.00 h) realizing an incremental test on a cycle ergometer with 3 min stages at workloads from 30 to 70% of maximal oxygen uptake (VO2max). Substrate oxidation rates were measured by indirect calorimetry. In each trial, the maximum rate of fat oxidation (MFO) and the intensity that elicited MFO (Fatmax) were measured. RESULTS: In comparison to placebo, MFO was significantly higher with caffeine both in the morning (0.24 ± 0.13 vs 0.30 ± 0.14 g/min; p < 0.001; ES = 0.79) and in the evening (0.21 ± 0.08 vs 0.28 ± 0.10 g/min; p = 0.002; ES = 0.72). No time-of-day effect on the capacity of caffeine to increase MFO was found (all p = 0.336) CONCLUSION: The intake of 3 mg/kg of caffeine increased the use of fat as a fuel during exercise independently of the time-of-day in trained women. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov with the following ID: NCT05880186 by 15 May 2023.


Subject(s)
Adipose Tissue , Caffeine , Humans , Female , Caffeine/pharmacology , Double-Blind Method , Adipose Tissue/metabolism , Oxidation-Reduction , Exercise , Exercise Test , Oxygen Consumption , Calorimetry, Indirect
5.
Nutrients ; 15(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37892395

ABSTRACT

In the last few decades, numerous studies pertaining to research groups worldwide have investigated the effects of oral caffeine intake on fat oxidation at rest, during exercise, and after exercise. However, there is no bibliometric analysis to assess the large volume of scientific output associated with this topic. A bibliometric analysis of this topic may be used by researchers to assess the current scientific interest in the application of caffeine as a nutritional strategy to augment fat oxidation, the journals with more interest in this type of publication, and to draw international collaborations between groups working in the same area. For these reasons, the purpose of this study was to assess the research activity regarding oral caffeine intake and fat oxidation rate in the last few decades by conducting a bibliometric and visual analysis. Relevant publications from 1992 to 2022 were retrieved from the Web of Science (WoS) Core Collection database. Quantitative and qualitative variables were collected, including the number of publications and citations, H-indexes, journals of citation reports, co-authorship, co-citation, and the co-occurrence of keywords. There were 182 total publications, while the number of annual publications is saw-shaped with a modest increase of 11.3% from 2000 to 2009 to 2010 to 2019. The United States was the country with the highest number of publications (24.17% of the total number of articles), followed by the Netherlands (17.03%). According to citation analyses, the average number of citations per document is 130, although there are 21 documents that have received more than 100 citations; the most cited document reached 644 citations. These citation data support the overall relevance of this topic in the fields of nutrition and dietetics and sport sciences that when combined harbored 85.71% of all articles published in the WoS. The most productive author was Westerterp-Plantenga with 16 articles (8.79% of the total number of articles). Nutrients was the journal that published the largest number of articles on this topic (6.59% of the total number of articles). Last, there is a tendency to include keywords such as "performance", "carbohydrate", and "ergogenic aid" in the newer articles, while "obesity", "thermogenic", and "tea" are the keywords more commonly included in older documents. Although research into the role of caffeine on fat oxidation has existed since the 1970s, our analysis suggests that the scientific output associated with this topic has progressively increased since 1992, demonstrating that this is a nutritional research area with a strong foundational base of scientific evidence. Based on the findings of this bibliometric analysis, future investigation may consider focusing on the effects of sex and tolerance to caffeine to widen the assessment of the effectiveness of oral caffeine intake as a nutritional strategy to augment the use of fat as a fuel, as these terms rarely appear in the studies included in this analysis. Additionally, more translational research is necessary as the studies that investigate the effect of oral caffeine intake in ecologically valid contexts (i.e., exercise training programs for individuals with excessive adiposity) are only a minor part of the studies on this topic.


Subject(s)
Bibliometrics , Caffeine , Humans , United States , Aged , Netherlands , Authorship , Databases, Factual
6.
Biol Sport ; 40(3): 827-834, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37398977

ABSTRACT

The aim of this study was to investigate the effect of 3 and 6 mg of caffeine per kg of body mass (mg/kg) on whole-body substrate oxidation during an incremental cycling exercise test in healthy active women. Using a double-blind placebo-controlled counterbalanced experimental design, 14 subjects performed three identical exercise trials after the ingestion of 3 or 6 mg/kg of caffeine or placebo. The exercise trials consisted of an incremental test on a cycle ergometer with 3-min stages at workloads from 30 to 70% of maximal oxygen uptake (VO2max). Substrate oxidation rates were measured by indirect calorimetry. During exercise, there was a significant effect of substance (F = 5.221; p = 0.016) on fat oxidation rate. In comparison to the placebo, 3 mg/kg of caffeine increased fat oxidation rates at 30 to 60% of VO2max (all p < 0.050) and 6 mg/kg at 30 to 50% of VO2max (all p < 0.050). There was also a significant effect of substance (F = 5.221; p = 0.016) on carbohydrate oxidation rate (F = 9.632; p < 0.001). In comparison to placebo, both caffeine doses decreased carbohydrate oxidation rates at 40 to 60% VO2max (all p < 0.050). The maximal rate of fat oxidation with placebo was 0.24 ± 0.03 g/min, which increased with 3 mg/kg to 0.29 ± 0.04 g/min (p = 0.032) and to 0.29 ± 0.03 with 6 mg/kg of caffeine (p = 0.042). Acute intake of caffeine improves the utilization of fat as a fuel during submaximal aerobic exercise in healthy active women with an effect of similar magnitude after the intake of 3 and 6 mg of caffeine per kg of body mass. Thus, the use of 3 mg/kg of caffeine would be more recommended than 6 mg/kg for women seeking increased fat utilization during submaximal exercise.

7.
Int J Sports Med ; 44(2): 145-152, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36368655

ABSTRACT

The influence of the rs8111989 polymorphism in the muscle-specific creatine kinase gene (CKM) on injury incidence is unknown. The aim was to investigate CKM polymorphism on injury incidence in high-performance football players. A cohort of 109 high-performance players was genotyped by using saliva samples. Injury incidence was similar in players with the GG, GA, and AA genotypes and did not modify incidence during training or match exposure (p=0.583 and p=0.737 respectively). GG players had a higher frequency of slight-severity injuries (60.0 vs. 10.2 vs. 24.2%, p<0.001), while GA players had a higher frequency of severe injuries (16.7 vs. 30.8 vs. 10.0%, p=0.021). GA players also had a higher frequency of muscle tears (34.8 vs. 59.0 vs. 20.0%, p<0.001). Muscle contracture was a more frequent injury in players with the GG genotype (40.0%, p<0.001). G allele carriers had lower frequencies of gradual-onset injuries (4.1 vs. 16.7%, p=0.035) and recurrent injuries (6.1 vs. 16.7%, p=0.003) than AA players. A allele carriers had higher frequency of severe injuries (10.0 vs. 21.9%, p=0.044) than GG players. Genotypes in the CKM rs8111989 polymorphism did not affect injury incidence in high-performance football players. Players with the GA genotype were more prone to severe injuries and muscle tears when compared to GG and AA players.


Subject(s)
Athletic Injuries , Football , Soccer , Humans , Athletic Injuries/epidemiology , Soccer/injuries , Polymorphism, Genetic , Genotype , Incidence
8.
Eur J Sport Sci ; 23(6): 936-942, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35437101

ABSTRACT

Maximal fat oxidation during exercise (MFO) and the intensity that elicits MFO (Fatmax) seems to show a diurnal variation in men, which favours an increased performance in the afternoon than the morning. At present, it remains unknown whether the observed MFO and Fatmax diurnal variation in men is also present in women. Therefore, the current study examined the diurnal variations of MFO and Fatmax in women. Nineteen healthy women (age: 26.9 ± 8.7 years, maximum oxygen uptake: 39.8 ± 6.5 ml/kg/min) participated in the study. MFO and Fatmax were determined by a graded exercise test in cycloergometer using a cross-over design performed on two separate daytime schedules, one conducted in the morning (8am-11am) and one in the afternoon (5pm-8pm). Stoichiometric equations were used to calculate fat oxidation rates. There were no significant differences between MFO-morning and MFO-afternoon (0.24 ± 0.10 vs. 0.23 ± 0.07 g/min, respectively; P = 0.681). Similarly, there was no significant differences between Fatmax-morning and Fatmax-afternoon (41.1 ± 4.7 vs. 42.6 ± 5.5% of maximal oxygen uptake, respectively; P = 0.305). These results persisted after controlling for fat mass percentage (all P > 0.5). In summary, the main finding of the present study was that MFO and Fatmax were similar independent of the time-of-day when the exercise test is performed in healthy women. These results have important clinical implications since they suggest that, in contrast to what was found in men, MFO and Fatmax show similar rates during the course of the day in women.HighlightsMFO and Fatmax were similar during the afternoon and morning in young healthy women.Our results suggest that, in women, it does not matter when endurance exercise is performed in term of fat metabolism during exercise.


Subject(s)
Adipose Tissue , Oxygen Consumption , Male , Humans , Female , Adolescent , Young Adult , Adult , Cross-Over Studies , Adipose Tissue/metabolism , Calorimetry, Indirect , Oxygen/metabolism , Oxidation-Reduction , Exercise Test
9.
Eur J Nutr ; 62(1): 311-319, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35972531

ABSTRACT

PURPOSE: The effect of caffeine to enhance fat utilisation as fuel for submaximal aerobic exercise is well established. However, it is unknown whether this effect is dose dependent. The aim of this study was to investigate the effect of 3 and 6 mg of caffeine per kg of body mass (mg/kg) on whole-body substrate oxidation during an incremental cycling exercise test. METHODS: In a double-blind, randomised, and counterbalanced experiment, 18 recreationally active males (maximal oxygen uptake [VO2max] = 56.7 ± 8.2 mL/kg/min) performed three experimental trials after ingesting either 3 mg/kg of caffeine, 6 mg/kg of caffeine or a placebo (cellulose). The trials consisted of an incremental exercise test on a cycle ergometer with 3-min stages at workloads from 30 to 80% of VO2max. Energy expenditure, fat oxidation rate, and carbohydrate oxidation rate were continuously measured by indirect calorimetry. RESULTS: During exercise, there was significant effect of substance (F = 7.969; P = 0.004) on fat oxidation rate. In comparison to the placebo, the rate of fat oxidation was higher with 3 mg/kg of caffeine at 30, 40, 50 and 70% of VO2max [all P < 0.050, effect sizes (ES) from 0.38 to 0.50] and with 6 mg/kg of caffeine at 30, 40, 50, 60 and 70% of VO2max (all P < 0.050, ES from 0.28 to 0.76). Both 3 mg/kg (0.40 ± 0.21 g/min, P = 0.021, ES = 0.57) and 6 mg/kg of caffeine (0.40 ± 0.17 g/min P = 0.001, ES = 0.60) increased the maximal rate of fat oxidation during exercise over the placebo (0.31 ± 0.15 g/min). None of the caffeine doses produced any significant effect on energy expenditure or heart rate during exercise, while both caffeine doses reduced perceived fatigue at 80% of VO2max (all P < 0.050, ES from 0.71 to 1.48). CONCLUSION: The effect of caffeine to enhance fat oxidation during submaximal aerobic exercise is of similar magnitude with 3 and 6 mg of caffeine per kg of body mass. Thus, a dose of 3 mg of caffeine per kg of body mass would be sufficient to enhance fat utilisation as fuel during submaximal exercise.


Subject(s)
Caffeine , Exercise , Male , Humans , Caffeine/pharmacology , Exercise/physiology , Oxidation-Reduction , Energy Metabolism , Exercise Test , Double-Blind Method , Oxygen Consumption/physiology
10.
Int J Sports Med ; 44(1): 64-71, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35921847

ABSTRACT

Injuries are a complex trait that can stem from the interaction of several genes. The aim of this research was to examine the relationship between muscle performance-related genes and overuse injury risk in elite endurance athletes, and to examine the feasibility of determining a total genotype score that significantly correlates with injury. A cohort of 100 elite endurance athletes (50 male and 50 female) was selected. AMPD1 (rs17602729), ACE (rs4646994), ACTN3 (rs1815739), CKM (rs8111989) and MLCK ([rs2849757] and [rs2700352]) polymorphisms were genotyped by using real-time polymerase chain reaction (real time-PCR). Injury characteristics during the athletic season were classified following the Consensus Statement for injuries evaluation. The mean total genotype score (TGS) in non-injured athletes (68.263±13.197 arbitrary units [a.u.]) was different from that of injured athletes (50.037±17.293 a.u., p<0.001). The distribution of allelic frequencies in the AMPD1 polymorphism was also different between non-injured and injured athletes (p<0.001). There was a TGS cut-off point (59.085 a.u.) to discriminate non-injured from injured athletes with an odds ratio of 7.400 (95% CI 2.548-21.495, p<0.001). TGS analysis appears to correlate with elite endurance athletes at higher risk for injury. Further study may help to develop this as one potential tool to help predict injury risk in this population.


Subject(s)
Athletic Injuries , Athletic Performance , Genetic Profile , Female , Humans , Male , Actinin/genetics , Athletes , Athletic Injuries/genetics , Athletic Performance/physiology , Genotype , Physical Endurance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL