Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2313848, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38583064

ABSTRACT

The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.

2.
RSC Adv ; 11(51): 31959-31966, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-35495525

ABSTRACT

In this work, we describe the photoisomerization of facial rhenium(i) tricarbonyl complexes bearing P,N-bidentate pyridyl/phosphine ligands with different chelating rings and anions: RePNBr, RePNTfO, and RePNNBr, which are triggered under irradiation at 365 nm in solutions. The apparent photodegradation rate constants (k app) depend on the coordinating ability of the solvent, being lowest in acetonitrile. The k app value increases as the temperature rises, suggesting a reactive IL excited state thermally populated from the MLCT excited state involved. Using the Eyring equation, positive activation enthalpies (ΔH ≠) accompanied by high negative values for the activation entropy (ΔS ≠) were obtained. These results suggest whatever the P,N-ligand or anion, the reaction proceeds through a strongly solvated or a compact transition state, which is compatible with an associative mechanism for the photoisomerization. A 100-fold decrease in the log10 CFU value is observed for E. coli and S. aureus in irradiated solutions of the compounds, which follows the same tendency as their singlet oxygen generation quantum yield: RePNBr > RePNTfO > RePNNBr, while no antibacterial activity is observed in the darkness. This result indicates that the generation of singlet oxygen plays a key role in the antibacterial capacity of these complexes.

3.
Microb Biotechnol ; 14(6): 2385-2402, 2021 11.
Article in English | MEDLINE | ID: mdl-33171015

ABSTRACT

Lignin-based aromatics are attractive raw materials to derive medium-chain length poly(3-hydroxyalkanoates) (mcl-PHAs), biodegradable polymers of commercial value. So far, this conversion has exclusively used the ortho-cleavage route of Pseudomonas putida KT2440, which results in the secretion of toxic intermediates and limited performance. Pseudomonas putida H exhibits the ortho- and the meta-cleavage pathways where the latter appears promising because it stoichiometrically yields higher levels of acetyl-CoA. Here, we created a double-mutant H-ΔcatAΔA2 that utilizes the meta route exclusively and synthesized 30% more PHA on benzoate than the parental strain but suffered from catechol accumulation. The single deletion of the catA2 gene in the H strain provoked a slight attenuation on the enzymatic capacity of the ortho route (25%) and activation of the meta route by nearly 8-fold, producing twice as much mcl-PHAs compared to the wild type. Inline, the mutant H-ΔcatA2 showed a 2-fold increase in the intracellular malonyl-CoA abundance - the main precursor for mcl-PHAs synthesis. As inferred from flux simulation and enzyme activity assays, the superior performance of H-ΔcatA2 benefited from reduced flux through the TCA cycle and malic enzyme and diminished by-product formation. In a benzoate-based fed-batch, P. putida H-ΔcatA2 achieved a PHA titre of 6.1 g l-1 and a volumetric productivity of 1.8 g l-1 day-1 . Using Kraft lignin hydrolysate as feedstock, the engineered strain formed 1.4 g l- 1 PHA. The balancing of carbon flux between the parallel catechol-degrading routes emerges as an important strategy to prevent intermediate accumulation and elevate mcl-PHA production in P. putida H and, as shown here, sets the next level to derive this sustainable biopolymer from lignin hydrolysates and aromatics.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Benzoates , Carbon , Carbon Cycle , Lignin , Pseudomonas putida/genetics
4.
J Biotechnol ; 275: 13-16, 2018 Jun 10.
Article in English | MEDLINE | ID: mdl-29605637

ABSTRACT

We describe the genome sequence of Pseudomonas reinekei MT1 and Achromobacter xylosoxidans MT3, the most abundant members of a bacterial community capable of degrading chloroaromatic compounds. The MT1 genome contains open reading frames encoding enzymes responsible for the catabolism of chlorosalicylate, methylsalicylate, chlorophenols, phenol, benzoate, p-coumarate, phenylalanine, and phenylacetate. On the other hand, the MT3 strain genome possesses no ORFs to metabolize chlorosalicylates; instead the bacterium is capable of metabolizing nitro-phenolic and phenolic compounds, which can be used as the only carbon and energy source by MT3. We also confirmed that MT3 displays the genetic machinery for the metabolism of chlorocathecols and chloromuconates, where the latter are toxic compounds secreted by MT1 when degrading chlorosalicylates. Altogether, this work will advance our fundamental understanding of bacterial interactions.


Subject(s)
Achromobacter denitrificans/genetics , Pseudomonas/genetics , Sequence Analysis, DNA/methods , Base Composition , Biosynthetic Pathways , Chromosome Mapping , Genome Size , Genome, Bacterial , Phylogeny , Pseudomonas/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...