Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Macromolecules ; 57(10): 4717-4728, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38827959

ABSTRACT

Directing self-assembly of photopolymerizable systems is advantageous for controlling polymer nanostructure and material properties, but developing techniques for inducing ordered structure remains challenging. In this work, well-defined diblock or random copolymers were incorporated into cationic photopolymerizable epoxy systems to investigate the impact of copolymer architecture on self-assembly and phase separated nanostructures. Copolymers consisting of poly(hydroxyethyl acrylate)-x-(butyl acrylate) were prepared using photoiniferter polymerization to control functional group placement and molecular weight/polydispersity. Prepolymer configuration and concentration induced distinctly different effects on the resin flow and photopolymerization kinetics. The diblock copolymer self-assembled into nanostructured phases within the resin matrix, whereas the random copolymer formed an isotropic mixture. Rapid photopolymerization and ambient temperature conditions during cure facilitated retention of the self-assembled phases, leading to considerably different composite morphology and thermomechanical behavior. Increased loading of the diblock copolymer induced long-range ordered cocontinuous structures. Even with nearly identical prepolymer composition, controlled nanophase separation resulted in significantly enhanced tensile properties relative to those of the isotropic system. This work demonstrates that controlling phase separation with a block copolymer architecture allows access to nanostructured photopolymers with unique and enhanced properties.

2.
ACS Appl Bio Mater ; 7(5): 3124-3135, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38584364

ABSTRACT

The durability of photografted zwitterionic hydrogel coatings on cochlear implant biomaterials was examined to determine the viability of these antifouling surfaces during insertion and long-term implant usage. Tribometry was used to determine the effect of zwitterionic coatings on the lubricity of surfaces with varying hydration levels, applied normal force, and time frame. Additionally, flexural resistance was investigated using mandrel bending. Ex vivo durability was assessed by determining the coefficient of friction between tissues and treated surfaces. Furthermore, cochlear implantation force was measured using cadaveric human cochleae. Hydrated zwitterionic hydrogel coatings reduced frictional resistance approximately 20-fold compared to uncoated PDMS, which led to significantly lower mean force experienced by coated cochlear implants during insertion compared to uncoated systems. Under flexural force, zwitterionic films resisted failure for up to 60 min of desiccation. The large increase in lubricity was maintained for 20 h under continual force while hydrated. For loosely cross-linked systems, films remained stable and lubricious even after rehydration following complete drying. All coatings remained hydrated and functional under frictional force for at least 30 min in ambient conditions allowing drying, with lower cross-link densities showing the greatest longevity. Moreover, photografted zwitterionic hydrogel samples showed no evidence of degradation and nearly identical lubricity before and after implantation. This work demonstrates that photografted zwitterionic hydrogel coatings are sufficiently durable to maintain viability before, during, and after implantation. Mechanical properties, including greatly increased lubricity, are preserved after complete drying and rehydration for various applied forces. Additionally, this significantly enhanced lubricity translates to significantly decreased force during insertion of implants which should result in less trauma and scarring.


Subject(s)
Coated Materials, Biocompatible , Cochlear Implants , Hydrogels , Materials Testing , Hydrogels/chemistry , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Surface Properties , Particle Size
3.
J Neural Eng ; 21(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38547528

ABSTRACT

Objective. Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function.Approach.For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineer precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding and use live imaging to better understand how neurite growth is guided by these cues.Main Results.We find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity is increased by 20%-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made obtuse. Further, we see that dorsal root ganglion neuron growth cones change their morphology and migration to become more elongated within microfeatures. Our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain.Significance.Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growthin vivo.


Subject(s)
Cochlear Implants , Neurites , Growth Cones , Cells, Cultured , Neurons , Spiral Ganglion
4.
ACS Appl Polym Mater ; 6(5): 2442-2452, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481475

ABSTRACT

Utilizing self-assembled lyotropic liquid crystal (LLC) templates with radical photopolymerization shows promise in controlling polymer structure on the nanometer scale This control of nanostructure allows tailoring and enhancement of material properties not attainable in traditional polymerization in applications including hydrogels and stimuli-responsive systems. However, thermodynamically driven phase separation between the polymer and LLC templates often hinders the control of local polymer order and resultant polymer properties. This study investigates an alternative method to control the hydrogel nanostructure and avoid phase separation using imidazolium ionic liquids (ILs) in the LLC template while modulating the light intensity used in photopolymerization. The addition of the IL improves the thermodynamic stability and enhances the polymerization rate in the LLC system. The degree of LLC nanostructure retention is increased by increasing light intensities during polymerization. In addition, intermediate concentrations of cross-linker allow a balance between phase stability and cross-linking to lock in LLC morphology. With enhanced retention, the maximum water uptake is significantly higher compared with isotropic controls. These results demonstrate a method to increase the structure on the nanometer scale of a polymer by combining the addition of ILs with the proper selection of light intensity and cross-link density that allows access to unique hydrogel properties. These templated polymers demonstrate enhanced swelling and a stimuli response that show promise in applications ranging from drug delivery to water remediation.

5.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693432

ABSTRACT

Cochlear implants (CIs) provide auditory perception to those with profound sensorineural hearing loss: however, the quality of sound perceived by a CI user does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function. For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineered precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding. Additionally, we analyze sensory neurite growth in response to topographically patterned substrates and use live imaging to better understand how neurite growth is guided by these cues. In assessing the ability of neurites to sense and turn in response to topographical cues, we find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity can be increased by 20-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made more obtuse. Further, by using engineered topographies and live imaging of dorsal root ganglion neurons (DRGNs), we see that DRGN growth cones change their morphology and migration to become more elongated within microfeatures. However, our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. This reorientation is likely related to the tension the neurite shaft experiences when the growth cone elongates in the microfeature around a turn. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain. Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess SGN neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growth in vivo.

6.
Acta Biomater ; 166: 212-223, 2023 08.
Article in English | MEDLINE | ID: mdl-37187301

ABSTRACT

The foreign body response to implanted materials often complicates the functionality of sensitive biomedical devices. For cochlear implants, this response can reduce device performance, battery life and preservation of residual acoustic hearing. As a permanent and passive solution to the foreign body response, this work investigates ultra-low-fouling poly(carboxybetaine methacrylate) (pCBMA) thin film hydrogels that are simultaneously photo-grafted and photo-polymerized onto polydimethylsiloxane (PDMS). The cellular anti-fouling properties of these coatings are robustly maintained even after six-months subcutaneous incubation and over a broad range of cross-linker compositions. On pCBMA-coated PDMS sheets implanted subcutaneously, capsule thickness and inflammation are reduced significantly in comparison to uncoated PDMS or coatings of polymerized poly(ethylene glycol dimethacrylate) (pPEGDMA). Further, capsule thickness is reduced over a wide range of pCBMA cross-linker compositions. On cochlear implant electrode arrays implanted subcutaneously for one year, the coating bridges over the exposed platinum electrodes and dramatically reduces the capsule thickness over the entire implant. Coated cochlear implant electrode arrays could therefore lead to persistent improved performance and reduced risk of residual hearing loss. More generally, the in vivo anti-fibrotic properties of pCBMA coatings also demonstrate potential to mitigate the fibrotic response on a variety of sensing/stimulating implants. STATEMENT OF SIGNIFICANCE: This article presents, for the first time, evidence of the in vivo anti-fibrotic effect of zwitterionic hydrogel thin films photografted to polydimethylsiloxane (PDMS) and human cochlear implant arrays. The hydrogel coating shows no evidence of degradation or loss of function after long-term implantation. The coating process enables full coverage of the electrode array. The coating reduces fibrotic capsule thickness 50-70% over a broad range of cross-link densities for implantations from six weeks to one year.


Subject(s)
Cochlear Implants , Foreign Bodies , Humans , Hydrogels/pharmacology , Hydrogels/metabolism , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/metabolism , Dimethylpolysiloxanes
7.
Mol Pharm ; 19(12): 4675-4684, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36349888

ABSTRACT

Dentin biomodification is a promising approach to enhance dental tissue biomechanics and biostability for restorative and reparative therapies. One of the most active dentin tissue biomodifiers is proanthocyanidin (PAC)-rich natural extracts, which are used in the dental bonding procedure in combination with resin-based adhesives (RBAs). This study aimed to investigate the use of mesoporous silica nanoparticles (MSNs) for the sustained delivery of PACs for dentin biomodification as a novel drug-delivery system for dental applications. The effects of the incorporation of MSN functionalized with 3-aminopropyltriethoxysilane (APTES) and loaded with PAC into an experimental RBA were assessed by characterizing the material mechanical properties. In addition, the immediate and long-term bonding performance of an experimental resin-based primer (RBP) containing MSN-APTES loaded with PAC was also evaluated. For that, different formulations of RBA and RBP were prepared containing 20% w/v MSN-APTES loaded with PAC before or after functionalization (MSN-PAC-APTES and MSN-APTES-PAC, respectively). The incorporation of MSN-APTES-PAC did not negatively impact the degree of conversion or the overall mechanical properties of the RBA. However, adding MSN-PAC-APTES resulted in inferior mechanical properties of the experimental RBA. In the adhesion studies, APTES-functionalized MSN was successfully added to an experimental RBP for drug-delivery purposes without compromising the bond strength to the dentin or the failure mode. Interestingly, the sequence of surface functionalization with APTES resulted in differences in the bonding performance, with better long-term results for RBP containing MSN loaded with PAC after functionalization.


Subject(s)
Nanoparticles , Proanthocyanidins , Silicon Dioxide/chemistry , Proanthocyanidins/chemistry , Nanoparticles/chemistry , Silanes/chemistry
8.
ACS Biomater Sci Eng ; 7(9): 4494-4502, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34347419

ABSTRACT

Zwitterionic polymer networks have shown promise in reducing the short- and long-term inflammatory foreign body response to implanted biomaterials by combining the antifouling properties of zwitterionic polymers with the mechanical stability provided by cross-linking. Cross-link density directly modulates mechanical properties (i.e., swelling behavior, resistance to stress and strain, and lubricity) but theoretically could reduce desirable biological properties (i.e., antifouling) of zwitterionic materials. This work examined the effect of varying poly(ethylene glycol) dimethacrylate cross-linker concentration on protein adsorption, cell adhesion, equilibrium swelling, compressive modulus, and lubricity of zwitterionic thin films. Furthermore, this work aimed to determine the appropriate balance among each of these mechanical and biologic properties to produce thin films that are strong, durable, and lubricious, yet also able to resist biofouling. The results demonstrated nearly a 20-fold reduction in fibrinogen adsorption on zwitterionic thin films photografted on polydimethylsiloxane (PDMS) across a wide range of cross-link densities. Interestingly, either at high or low cross-link densities, increased levels of protein adsorption were observed. In addition to fibrinogen, macrophage and fibroblast cell adhesion was reduced significantly on zwitterionic thin films, with a large range of cross-link densities, resulting in low cell counts. The macrophage count was reduced by 30-fold, while the fibroblast count was reduced nearly 10-fold on grafted zwitterionic films relative to uncoated films. Increasing degrees of cell adhesion were noted as the cross-linker concentration exceeded 50%. As expected, increased cross-link density resulted in a reduced swelling but greater compressive modulus. Notably, the coefficient of friction was dramatically reduced for zwitterionic thin films compared to uncoated PDMS across a broad range of cross-link densities, an attractive property for insertional implants. This work identified a broad range of cross-link densities that provide desirable antifouling effects while also maintaining the mechanical functionality of the thin films.


Subject(s)
Biofouling , Hydrogels , Adsorption , Biocompatible Materials , Biofouling/prevention & control , Polymers
9.
Hear Res ; 409: 108315, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34343850

ABSTRACT

Functional outcomes with neural prosthetic devices, such as cochlear implants, are limited in part due to physical separation between the stimulating elements and the neurons they stimulate. One strategy to close this gap aims to precisely guide neurite regeneration to position the neurites in closer proximity to electrode arrays. Here, we explore the ability of micropatterned biochemical and topographic guidance cues, singly and in combination, to direct the growth of spiral ganglion neuron (SGN) neurites, the neurons targeted by cochlear implants. Photopolymerization of methacrylate monomers was used to form unidirectional topographical features of ridges and grooves in addition to multidirectional patterns with 90o angle turns. Microcontact printing was also used to create similar uni- and multi-directional patterns of peptides on polymer surfaces. Biochemical cues included peptides that facilitate (laminin, LN) or repel (EphA4-Fc) neurite growth. On flat surfaces, SGN neurites preferentially grew on LN-coated stripes and avoided EphA4-Fc-coated stripes. LN or EphA4-Fc was selectively adsorbed onto the ridges or grooves to test the neurite response to a combination of topographical and biochemical cues. Coating the ridges with EphA4-Fc and grooves with LN lead to enhanced SGN alignment to topographical patterns. Conversely, EphA4-Fc coating on the grooves or LN coating on the ridges tended to disrupt alignment to topographical patterns. SGN neurites respond to combinations of topographical and biochemical cues and surface patterning that leverages both cues enhance guided neurite growth.


Subject(s)
Neurites , Spiral Ganglion , Cells, Cultured , Cues , Neurons , Polymers
10.
Otol Neurotol ; 42(10): 1476-1483, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34310554

ABSTRACT

HYPOTHESIS: Application of photografted zwitterionic coatings to cochlear implant (CI) biomaterials will reduce friction and insertion forces. BACKGROUND: Strategies to minimize intracochlear trauma during implantation of an electrode array are critical to optimize outcomes including preservation of residual hearing. To this end, advances in thin-film zwitterionic hydrogel coatings on relevant biomaterials may show promise, in addition to the potential of these materials for decreasing the intracochlear foreign body response. METHODS: Using a recently designed one-step process, thin-film coatings derived from zwitterionic sulfobetaine methacrylate (SBMA) were photopolymerized and photografted to the surface of polydimethylsiloxane (PDMS, silastic) samples and also to CI arrays from two manufacturers. Fluorescein staining and scanning electron microscopy with energy-dispersive X-ray spectroscopy verified and characterized the coatings. Tribometry was used to measure the coefficient of friction between uncoated and coated PDMS and synthetic and biological tissues. Force transducer measurements were obtained during insertion of uncoated (n = 9) and coated (n = 9) CI electrode arrays into human cadaveric cochleae. RESULTS: SBMA thin-film coating of PDMS resulted in >90% reduction in frictional coefficients with steel, ceramic, and dermal tissue from guinea pigs (p < 0.0001). We employed a novel method for applying covalently bonded, durable, and uniform coating in geographically selective areas at the electrode array portion of the implant. Image analysis confirmed uniform coating of PDMS systems and the CI electrode arrays with SBMA polymer films. During insertion of electrode arrays into human cadaveric cochleae, SBMA coatings reduced maximum force by ∼40% during insertion (p < 0.001), as well as decreasing force variability and the overall work of insertion. CONCLUSION: Thin-film SBMA photografted coatings on PDMS and electrode arrays significantly reduce frictional coefficients and insertional forces in cadaveric cochleae. These encouraging findings support that thin-film zwitterionic coating of CI electrode arrays may potentially reduce insertional trauma and thereby promote improved hearing and other long-term outcomes.


Subject(s)
Cochlear Implantation , Cochlear Implants , Animals , Biocompatible Materials , Cochlea/surgery , Cochlear Implantation/methods , Friction , Guinea Pigs
11.
ACS Appl Bio Mater ; 4(2): 1283-1293, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014480

ABSTRACT

Due to its attractive mechanical properties and biocompatibility, poly(dimethyl)siloxane (PDMS) is widely used in the fabrication of biomedical materials. On the other hand, PDMS is also prone to adsorption of both proteins and bacteria, making PDMS implants susceptible to infection. Herein, we examine the use of durably cross-linked zwitterionic coatings for PDMS surfaces to mitigate bacterial adhesion. Using a single-step photografting technique, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA) thin films were covalently attached to PDMS substrates. The abilities of these coatings to resist the adhesion of Staphylococcus aureus and Staphylococcus epidermidis were tested in vitro under both wet and droplet conditions, as well as in subcutaneous and transcutaneous implantation models using Sprague-Dawley rats. Zwitterionic thin films effectively reduced bacterial adhesion in both in vitro and in vivo conditions. This was particularly true for pCBMA-coated materials, which exhibited significant reduction in bacterial adhesion and growth with respect to S. aureus and S. epidermidis for all in vitro conditions as well as the ability to resist bacterial growth on PDMS implants. The results of this study suggest that a simple and durable photografting process can be used to produce polymer thin films capable of preventing infection of implantable medical devices.


Subject(s)
Bacterial Adhesion , Dimethylpolysiloxanes/chemistry , Photochemical Processes , Staphylococcus aureus/physiology , Staphylococcus epidermidis/physiology , Animals , Biocompatible Materials , Biofilms , Biofouling , Implants, Experimental , Rats , Rats, Sprague-Dawley , Surface Properties
12.
Acta Biomater ; 94: 204-218, 2019 08.
Article in English | MEDLINE | ID: mdl-31055121

ABSTRACT

Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Retina/cytology , Animals , Caproates , Cell Movement , Humans , Induced Pluripotent Stem Cells/cytology , Inflammation , Lactones , Materials Testing , Microscopy, Electron, Scanning , Photons , Polymerization , Reproducibility of Results , Retinal Degeneration/therapy , Retinitis Pigmentosa/physiopathology , Stem Cells , Swine , Tissue Scaffolds
13.
Langmuir ; 35(5): 1100-1110, 2019 02 05.
Article in English | MEDLINE | ID: mdl-29983076

ABSTRACT

The foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel. reduce nonspecific protein adsorption, the first step of the FBR. The coating process uses benzophenone, a photografting agent and type II photoinitiator, to covalently link the cross-linked zwitterionic thin film to the PDMS surface. As the concentration of benzophenone on the surface increases, the adhesive strength of the zwitterionic thin films to PDMS surfaces increases as determined by shear adhesion. Additionally, with increased concentration of the adsorbed benzophenone, failure of the system changes from adhesive delamination to cohesive failure within the hydrogel, demonstrating that durable adhesive bonds are formed from the photografting process. Interestingly, antifouling properties of the zwitterionic polymers are preserved with significantly lower levels of nonspecific protein adsorption on zwitterion hydrogel-coated samples compared to uncoated controls. Fibroblast adhesion is also dramatically reduced on coated substrates. These results show that cross-linked pSBMA and pCBMA hydrogels can be readily photografted to PDMS substrates and show promise in potentially changing the fibrotic response to implanted biomaterials.


Subject(s)
Betaine/pharmacology , Biofouling/prevention & control , Coated Materials, Biocompatible/pharmacology , Dimethylpolysiloxanes/pharmacology , Methacrylates/pharmacology , Polymethacrylic Acids/pharmacology , Adsorption , Animals , Benzophenones/chemistry , Benzophenones/radiation effects , Betaine/chemical synthesis , Cell Adhesion/drug effects , Coated Materials, Biocompatible/chemical synthesis , Dimethylpolysiloxanes/chemical synthesis , Fibrinogen/chemistry , Fibroblasts/metabolism , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Methacrylates/chemical synthesis , Polymerization/radiation effects , Polymethacrylic Acids/chemical synthesis , Rats
14.
Biomacromolecules ; 19(9): 3682-3692, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30044915

ABSTRACT

Degradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography. PCL, a degradable polymer used in a number of biomedical applications, was functionalized with acrylate groups to enable photopolymerization and three-dimensional printing via stereolithography. PCL prepolymers with different molecular weights and functionalities were studied to understand the role of molecular structure in reaction kinetics, mechanical properties, and degradation rates. The mechanical properties of photocured PCL were dependent on cross-link density and directly related to the molecular weight and functionality of the prepolymers. High-molecular weight, low-functionality PCLDA prepolymers exhibited a lower modulus and a higher strain at break, while low-molecular weight, high-functionality PCLTA prepolymers exhibited a lower strain at break and a higher modulus. Additionally, degradation profiles of cross-linked PCL followed a similar trend, with low cross-link density leading to degradation times up to 2.5 times shorter than those of more highly cross-linked polymers. Furthermore, photopolymerized PCL showed biocompatibility both in vitro and in vivo, causing no observed detrimental effects on seeded murine-induced pluripotent stem cells or when implanted into pig retinas. Finally, the ability to create three-dimensional PCL structures is shown by fabrication of simple structures using digital light projection stereolithography. Low-molecular weight, high-functionality PCLTA prepolymers printed objects with feature sizes near the hardware resolution limit of 50 µm. This work lays the foundation for future work in fabricating microscale PCL structures for a wide range of tissue regeneration applications.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Stereolithography , Acrylates/chemistry , Animals , Biocompatible Materials/adverse effects , Cells, Cultured , Cross-Linking Reagents/chemistry , Induced Pluripotent Stem Cells/drug effects , Mice , Molecular Weight , Retina/drug effects , Swine , Swine, Miniature
15.
J Tissue Eng Regen Med ; 12(3): e1392-e1403, 2018 03.
Article in English | MEDLINE | ID: mdl-28753740

ABSTRACT

Developing and regenerating neurites respond to a variety of biophysical and biochemical cues in their micro-environment to reach target cells and establish appropriate synapses. Defining the hierarchal relationship of both types of cues to direct neurite growth carries broad significance for neural development, regeneration, and, in particular, engineering of neural prostheses that improve tissue integration with native neural networks. In this work, chemorepulsive biochemical borders are established on substrates with a range of surface microfeatures to determine the potential of physical cues to overcome conflicting biochemical cues. Physical micropatterns are fabricated using photomasking techniques to spatially control photoinitiation events of the polymerization. Temporal control of the reaction allows for generation of microfeatures with the same amplitude across a range of feature frequencies or periodicities. The micropatterned substrates are then modified with repulsive chemical borders between laminin and either EphA4-Fc or tenascin C that compete with the surface microfeatures to direct neurite growth. Behaviour of neurites from spiral ganglion and trigeminal neurons is characterized at biochemical borders as cross, turn, stop, or repel events. Both the chemical borders and physical patterns significantly influence neurite pathfinding. On unpatterned surfaces, most neurites that originate on laminin are deterred by the border with tenascin C or EphA4-Fc. Importantly, substrates with frequent micropattern features overcome the influence of the chemorepulsive border to dominate neurite trajectory. Designing prosthesis interfaces with appropriate surface features may allow for spatially organized neurite outgrowth in vivo even in the presence of conflicting biochemical cues in native target tissues.


Subject(s)
Light , Neurites/metabolism , Polymerization , Animals , Fluorescence , Laminin/metabolism , Neurites/radiation effects , Rats , Receptor, EphA4/metabolism , Receptors, Fc/metabolism , Spiral Ganglion/metabolism , Tenascin/metabolism , Trigeminal Ganglion/metabolism
16.
Otol Neurotol ; 39(1): 119-126, 2018 01.
Article in English | MEDLINE | ID: mdl-29227456

ABSTRACT

HYPOTHESIS: Microtopographical patterns generated by photopolymerization of methacrylate polymer systems will direct growth of neurites from adult neurons, including spiral ganglion neurons (SGNs). BACKGROUND: Cochlear implants (CIs) provide hearing perception to patients with severe to profound hearing loss. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by spread of the electrical currents in the inner ear. Directing the regrowth of SGN peripheral processes towards stimulating electrodes could help reduce current spread and improve spatial resolution provided by the CI. Previous work has demonstrated that micro- and nano-scale patterned surfaces precisely guide the growth of neurites from a variety of neonatal neurons including SGNs. Here, we sought to determine the extent to which adult neurons likewise respond to these topographical surface features. METHODS: Photopolymerization was used to fabricate methacrylate polymer substrates with micropatterned surfaces of varying amplitudes and periodicities. Dissociated adult dorsal root ganglion neurons (DRGNs) and SGNs were cultured on these surfaces and the alignment of the neurite processes to the micropatterns was determined. RESULTS: Neurites from both adult DRGNs and SGNs significantly aligned to the patterned surfaces similar to their neonatal counterparts. Further DRGN and SGN neurite alignment increased as the amplitude of the microfeatures increased. Decreased pattern periodicity also improved neurite alignment. CONCLUSION: Microscale surface topographic features direct the growth of adult SGN neurites. Topographical features could prove useful for guiding growth of SGN peripheral axons towards a CI electrode array.


Subject(s)
Cochlear Implants , Guided Tissue Regeneration/methods , Nerve Regeneration , Neurites , Animals , Cells, Cultured , Ganglia, Spinal/growth & development , Polymers , Spiral Ganglion/growth & development
17.
ACS Appl Mater Interfaces ; 9(37): 31488-31496, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28841276

ABSTRACT

Cochlear Implants (CIs) suffer from limited tonal resolution due, in large part, to spatial separation between stimulating electrode arrays and primary neural receptors. In this work, a combination of physical and chemical micropatterns, formed on acrylate polymers, are used to direct the growth of primary spiral ganglion neurons (SGNs), the inner ear neurons. Utilizing the inherent temporal and spatial control of photopolymerization, physical microgrooves are fabricated using a photomask in a single step process. Biochemical patterns are generated by adsorbing laminin, a cell adhesion protein, to acrylate polymer surfaces followed by irradiation through a photomask with UV light to deactivate protein in exposed areas and generate parallel biochemical patterns. Laminin deactivation was shown increase as a function of UV light exposure while remaining adsorbed to the polymer surface. SGN neurites show alignment to both biochemical and physical patterns when evaluated individually. Competing biochemical and physical patterns were also examined. The relative guiding strength of physical cues was varied by independently changing both the amplitude and the band spacing of the microgrooves, with higher amplitudes and shorter band spacing providing cues that more effective guide neurite growth. SGN neurites aligned to laminin patterns with lower physical pattern amplitude and thus weaker physical cues. Alignment of SGNs shifted toward the physical pattern with higher amplitude and lower periodicity patterns which represent stronger cues. These results demonstrate the ability of photopolymerized microfeatures to modulate alignment of inner ear neurites even in the presence of conflicting physical and biochemical cues laying the groundwork for next generation cochlear implants and neural prosthetic devices.


Subject(s)
Spiral Ganglion , Cells, Cultured , Laminin , Neurites , Neurons , Polymers
18.
Biomacromolecules ; 18(8): 2389-2401, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28671816

ABSTRACT

Developing materials that reduce or eliminate fibrosis encapsulation of neural prosthetic implants could significantly enhance implant fidelity by improving the tissue/electrode array interface. Here, we report on the photografting and patterning of two zwitterionic materials, sulfobetaine methacrylate (SBMA) and carboxybetaine methacrylate (CBMA), for controlling the adhesion and directionality of cells relevant to neural prosthetics. CBMA and SBMA polymers were photopolymerized and grafted on glass surfaces then characterized by X-ray photoelectron spectroscopy, water contact angle, and protein adsorption. Micropatterned surfaces were fabricated with alternating zwitterionic and uncoated bands. Fibroblasts, cells prevalent in fibrotic tissue, almost exclusively migrate and grow on uncoated bands with little to no cells present on zwitterionic bands, especially for CBMA-coated surfaces. Astrocytes and Schwann cells showed similarly low levels of cell adhesion and morphology changes when cultured on zwitterionic surfaces. Additionally, Schwann cells and inner ear spiral ganglion neuron neurites aligned well to zwitterionic patterns.


Subject(s)
Methacrylates/pharmacology , Neurons/metabolism , Spiral Ganglion/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Cell Adhesion/drug effects , Methacrylates/chemistry , Neurons/cytology , Photoelectron Spectroscopy , Rats , Schwann Cells/cytology , Schwann Cells/metabolism , Spiral Ganglion/cytology
19.
Front Physiol ; 7: 398, 2016.
Article in English | MEDLINE | ID: mdl-27695420

ABSTRACT

Most sense organs of arthropods are ensconced in small exoskeletal compartments that hinder direct access to plasma membranes. We have developed a method for exposing live sensory and supporting cells in such structures. The technique uses a viscous light cured resin to embed and support the structure, which is then sliced with a sharp blade. We term the procedure a "goggatomy," from the Khoisan word for a bug, gogga. To demonstrate the utility of the method we show that it can be used to expose the auditory chordotonal organs in the second antennal segment and the olfactory receptor neurons in the third antennal segment of Drosophila melanogaster, preserving the transduction machinery. The procedure can also be used on other small arthropods, like mosquitoes and mites to expose a variety of cells.

20.
Methods Mol Biol ; 1427: 305-18, 2016.
Article in English | MEDLINE | ID: mdl-27259935

ABSTRACT

The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.


Subject(s)
Cell Culture Techniques/methods , Neurites/metabolism , Schwann Cells/cytology , Spiral Ganglion/cytology , Animals , Animals, Newborn , Biocompatible Materials , Cells, Cultured , Cochlea/cytology , Mice , Rats , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...