Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931299

ABSTRACT

Carpal tunnel syndrome (CTS) is the most common cause of peripheral compressive neuropathy and consists of compression of the median nerve in the wrist. Although there are several etiologies, idiopathic is the most prevalent origin, and among the forms of treatment for CTS, conservative is the most indicated. However, despite the high prevalence in and impact of this syndrome on the healthcare system, there are still controversies regarding the best therapeutic approach for patients. Therefore, noting that some studies point to vitamin D deficiency as an independent risk factor, which increases the symptoms of the syndrome, this study evaluated the role of vitamin D supplementation and its influence on pain control, physical examination and response electroneuromyography to conservative treatment of carpal tunnel syndrome. For this, the sample consisted of 14 patients diagnosed with CTS and hypovitaminosis D, who were allocated into two groups. The control group received corticosteroid treatment, while the experimental group received corticosteroid treatment associated with vitamin D. Thus, from this study, it can be concluded that patients who received vitamin D, when compared to those who did not receive it, showed improvement in the degree of pain intensity, a reduction in symptom severity and an improvement in some electroneuromyographic parameters.


Subject(s)
Carpal Tunnel Syndrome , Electromyography , Vitamin D Deficiency , Vitamin D , Humans , Carpal Tunnel Syndrome/drug therapy , Vitamin D/therapeutic use , Female , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/complications , Male , Middle Aged , Adult , Treatment Outcome , Dietary Supplements , Adrenal Cortex Hormones/administration & dosage , Median Nerve/physiopathology , Aged
2.
Ageing Res Rev ; 96: 102250, 2024 04.
Article in English | MEDLINE | ID: mdl-38417711

ABSTRACT

Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.


Subject(s)
Alzheimer Disease , Dementia, Vascular , Insulin Resistance , Metabolic Diseases , Humans , Alzheimer Disease/metabolism , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Brain/metabolism , Metabolic Diseases/metabolism
3.
Front Syst Neurosci ; 17: 1242929, 2023.
Article in English | MEDLINE | ID: mdl-37600831

ABSTRACT

The basal ganglia are a subcortical collection of interacting clusters of cell bodies, and are involved in reward, emotional, and motor circuits. Within all the brain processing necessary to carry out voluntary movement, the basal nuclei are fundamental, as they modulate the activity of the motor regions of the cortex. Despite being much studied, the motor circuit of the basal ganglia is still difficult to understand for many people at all, especially undergraduate and graduate students. This review article seeks to bring the functioning of this circuit with a simple and objective approach, exploring the functional anatomy, neurochemistry, neuronal pathways, related diseases, and interactions with other brain regions to coordinate voluntary movement.

4.
J Comp Neurol ; 528(8): 1307-1320, 2020 06.
Article in English | MEDLINE | ID: mdl-31765000

ABSTRACT

The entorhinal cortex (EC) is associated with impaired cognitive function such as in the case of Alzheimer's disease, Parkinson's disease and Huntington's disease. The present study provides a detailed analysis of the cytoarchitectural and myeloarchitectural organization of the EC in the common marmoset Callithrix jacchus. Data were collected using Nissl and fiber stained preparations, supplemented with acetylcholinesterase and parvalbumin immunohistochemistry. The EC layers and subfields in the marmoset seem to be architectonically similar to those that have been proposed in nonhuman primates and humans to date; however, slight differences could be revealed using the present techniques. Throughout its rostrocaudal length, the entorhinal cortex presents a clear six-layered pattern. The entorhinal cortex is divided into six fields, named mainly in accordance to their rostrocaudal and mediolateral positions. At rostral levels, the neurons tend to be organized in patches that are surrounded by large, thick, radially oriented bundles of fibers, and the deep layers are poorly developed. At caudal levels, the divisions are more laminated in appearance. AChE staining at the borders of adjacent fields are consistent with the changes in layering revealed in Nissl-stained sections, of which the lateral regions of the EC display denser AChE staining than that of the medial banks. PV immunoreactivity was found in the labeled somata, dendrites, and axons in all layers and subdivisions. Additionally, we distinguished three subtypes of PV-immunoreactive neurons: multipolar, bipolar and spherical-shaped neurons, based on the shape of the somata and the disposition of the dendrites.


Subject(s)
Entorhinal Cortex/chemistry , Entorhinal Cortex/cytology , Neurons/chemistry , Animals , Callithrix , Entorhinal Cortex/anatomy & histology , Female , Male , Staining and Labeling/methods
5.
Curr Neuropharmacol ; 17(7): 648-665, 2019.
Article in English | MEDLINE | ID: mdl-30207235

ABSTRACT

BACKGROUND: Neurological disorders constitute a growing worldwide concern due to the progressive aging of the population and the risky behavior they represent. Herbal medicines have scientific relevance in the treatment of these pathologies. One of these substances, Astragaloside IV (AS-IV), is the main active compound present in the root of Astragalus membranaceus (Fisch.) Bge, a Chinese medicinal herb with neuroprotective properties. OBJECTIVE: In the present study we performed a systematic review that sought to comprehend the neuroprotective effect presented by AS-IV in experimental models of neurological disorders. METHODS: This study is a systematic review, where an electronic search in United States National Library of Medicine (PubMed), Science Direct, Cochrane Library, Scientific Electronic Library Online (SciELO), Scopus, Web of Science, Medline via Proquest and Periodicos Capes databases covering the years between 2007 and 2017, using "Astragaloside IV" and "Neurodegenerative diseases"; "Astragaloside IV" and " Neurological disorders" as reference terms was made. RESULTS: A total of 16 articles were identified, in which the efficacy of AS-IV was described in experimental models of Parkinson's disease, Alzheimer's disease, cerebral ischemia and autoimmune encephalomyelitis, by improving motor deficits and/or neurochemical activity, especially antioxidant systems, reducing inflammation and oxidative stress. CONCLUSION: The findings of the present study indicate that the administration of AS-IV can improve behavioral and neurochemical deficits largely due to its antioxidant, antiapoptotic and antiinflammatory properties, emerging as an alternative therapeutic approach for the treatment of neurological disorders.


Subject(s)
Nervous System Diseases/drug therapy , Neuroprotective Agents/pharmacology , Saponins/pharmacology , Triterpenes/pharmacology , Alzheimer Disease , Animals , Brain Ischemia , Encephalomyelitis , Humans , Parkinson Disease
7.
J Chem Neuroanat ; 77: 100-109, 2016 11.
Article in English | MEDLINE | ID: mdl-27292410

ABSTRACT

It is widely known that the catecholamine group is formed by dopamine, noradrenaline and adrenaline. Its synthesis is regulated by the enzyme called tyrosine hydroxylase. 3-hydroxytyramine/dopamine (DA) is a precursor of noradrenaline and adrenaline synthesis and acts as a neurotransmitter in the central nervous system. The three main nuclei, being the retrorubral field (A8 group), the substantia nigra pars compacta (A9 group) and the ventral tegmental area (A10 group), are arranged in the die-mesencephalic portion and are involved in three complex circuitries - the mesostriatal, mesolimbic and mesocortical pathways. These pathways are involved in behavioral manifestations, motricity, learning, reward and also in pathological conditions such as Parkinson's disease and schizophrenia. The aim of this study was to perform a morphological analysis of the A8, A9 and A10 groups in the common marmoset (Callithrix jacchus - a neotropical primate), whose morphological and functional characteristics support its suitability for use in biomedical research. Coronal sections of the marmoset brain were submitted to Nissl staining and TH-immunohistochemistry. The morphology of the neurons made it possible to subdivide the A10 group into seven distinct regions: interfascicular nucleus, raphe rostral linear nucleus and raphe caudal linear nucleus in the middle line; paranigral and parainterfascicular nucleus in the middle zone; the rostral portion of the ventral tegmental area nucleus and parabrachial pigmented nucleus located in the dorsolateral portion of the mesencephalic tegmentum. The A9 group was divided into four regions: substantia nigra compacta dorsal and ventral tiers; substantia nigra compacta lateral and medial clusters. No subdivisions were made for the A8 group. These results reveal that A8, A9 and A10 are phylogenetically stable across species. As such, further studies concerning such divisions are necessary in order to evaluate the occurrence of subdivisions that express DA in other primate species, with the aim of characterizing its functional relevance.


Subject(s)
Substantia Nigra/anatomy & histology , Substantia Nigra/enzymology , Tegmentum Mesencephali/anatomy & histology , Tegmentum Mesencephali/enzymology , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/anatomy & histology , Ventral Tegmental Area/enzymology , Animals , Behavior , Callithrix , Immunohistochemistry , Learning , Male , Motor Activity , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Neurons/ultrastructure , Raphe Nuclei/anatomy & histology , Raphe Nuclei/cytology , Raphe Nuclei/physiology , Reward
8.
J Chem Neuroanat ; 55: 58-66, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24444614

ABSTRACT

The 3-hydroxytyramine/dopamine is a monoamine of the catecholamine group and it is a precursor of the noradrenaline and adrenaline synthesis, in which the enzyme tyrosine hydroxylase acts as a rate-limiting enzyme. The dopaminergic nuclei retrorubral field (A8 group), substantia nigra pars compacta (A9 group) and ventral tegmental area (A10 group) are involved in three complex circuitries named mesostriatal, mesocortical and mesolimbic, which are directly related to various behavioral manifestations such as motor control, reward signaling in behavioral learning, motivation and pathological manifestations of Parkinson's disease and schizophrenia. The aim of this study was to describe the delimitation of A8, A9 and A10 groups and the morphology of their neurons in the brain of the rock cavy (Kerodon rupestris), a typical Brazilian Northeast rodent belonging to the suborder Hystricomorpha, family Caviidae. Coronal and sagittal sections of the rock cavy brains were submitted to Nissl staining and TH immunohistochemistry. The organization of these dopaminergic nuclei in the rock cavy brain is very similar to that found in other animals of the Rodentia order, except for the presence of the tail of the substantia nigra, which is found only in the species under study. The results revealed that, apart some morphological variations, A8, A9 and A10 groups are phylogenetically stable brain structures.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/metabolism , Animals , Female , Immunohistochemistry , Male , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL
...